All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.DescribePredictorResult Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Forecast module holds the client classes that are used for communicating with Amazon Forecast Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;

/**
 * 
 * @see AWS API
 *      Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class DescribePredictorResult extends com.amazonaws.AmazonWebServiceResult implements Serializable, Cloneable {

    /**
     * 

* The ARN of the predictor. *

*/ private String predictorArn; /** *

* The name of the predictor. *

*/ private String predictorName; /** *

* The Amazon Resource Name (ARN) of the algorithm used for model training. *

*/ private String algorithmArn; /** *

* The number of time-steps of the forecast. The forecast horizon is also called the prediction length. *

*/ private Integer forecastHorizon; /** *

* Whether the predictor is set to perform AutoML. *

*/ private Boolean performAutoML; /** *

* Whether the predictor is set to perform hyperparameter optimization (HPO). *

*/ private Boolean performHPO; /** *

* The default training parameters or overrides selected during model training. If using the AutoML algorithm or if * HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are * returned. For more information, see aws-forecast-choosing-recipes. *

*/ private java.util.Map trainingParameters; /** *

* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

*/ private EvaluationParameters evaluationParameters; /** *

* The hyperparameter override values for the algorithm. *

*/ private HyperParameterTuningJobConfig hPOConfig; /** *

* Describes the dataset group that contains the data to use to train the predictor. *

*/ private InputDataConfig inputDataConfig; /** *

* The featurization configuration. *

*/ private FeaturizationConfig featurizationConfig; /** *

* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

*/ private EncryptionConfig encryptionConfig; /** *

* Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You * specify the number of backtests to perform when you call the operation. *

*/ private PredictorExecutionDetails predictorExecutionDetails; /** *

* An array of the ARNs of the dataset import jobs used to import training data for the predictor. *

*/ private java.util.List datasetImportJobArns; /** *

* When PerformAutoML is specified, the ARN of the chosen algorithm. *

*/ private java.util.List autoMLAlgorithmArns; /** *

* The status of the predictor. States include: *

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to create a * forecast. *

*
*/ private String status; /** *

* If an error occurred, an informational message about the error. *

*/ private String message; /** *

* When the model training task was created. *

*/ private java.util.Date creationTime; /** *

* Initially, the same as CreationTime (when the status is CREATE_PENDING). This value is * updated when training starts (when the status changes to CREATE_IN_PROGRESS), and when training has * completed (when the status changes to ACTIVE) or fails (when the status changes to * CREATE_FAILED). *

*/ private java.util.Date lastModificationTime; /** *

* The ARN of the predictor. *

* * @param predictorArn * The ARN of the predictor. */ public void setPredictorArn(String predictorArn) { this.predictorArn = predictorArn; } /** *

* The ARN of the predictor. *

* * @return The ARN of the predictor. */ public String getPredictorArn() { return this.predictorArn; } /** *

* The ARN of the predictor. *

* * @param predictorArn * The ARN of the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withPredictorArn(String predictorArn) { setPredictorArn(predictorArn); return this; } /** *

* The name of the predictor. *

* * @param predictorName * The name of the predictor. */ public void setPredictorName(String predictorName) { this.predictorName = predictorName; } /** *

* The name of the predictor. *

* * @return The name of the predictor. */ public String getPredictorName() { return this.predictorName; } /** *

* The name of the predictor. *

* * @param predictorName * The name of the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withPredictorName(String predictorName) { setPredictorName(predictorName); return this; } /** *

* The Amazon Resource Name (ARN) of the algorithm used for model training. *

* * @param algorithmArn * The Amazon Resource Name (ARN) of the algorithm used for model training. */ public void setAlgorithmArn(String algorithmArn) { this.algorithmArn = algorithmArn; } /** *

* The Amazon Resource Name (ARN) of the algorithm used for model training. *

* * @return The Amazon Resource Name (ARN) of the algorithm used for model training. */ public String getAlgorithmArn() { return this.algorithmArn; } /** *

* The Amazon Resource Name (ARN) of the algorithm used for model training. *

* * @param algorithmArn * The Amazon Resource Name (ARN) of the algorithm used for model training. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withAlgorithmArn(String algorithmArn) { setAlgorithmArn(algorithmArn); return this; } /** *

* The number of time-steps of the forecast. The forecast horizon is also called the prediction length. *

* * @param forecastHorizon * The number of time-steps of the forecast. The forecast horizon is also called the prediction length. */ public void setForecastHorizon(Integer forecastHorizon) { this.forecastHorizon = forecastHorizon; } /** *

* The number of time-steps of the forecast. The forecast horizon is also called the prediction length. *

* * @return The number of time-steps of the forecast. The forecast horizon is also called the prediction length. */ public Integer getForecastHorizon() { return this.forecastHorizon; } /** *

* The number of time-steps of the forecast. The forecast horizon is also called the prediction length. *

* * @param forecastHorizon * The number of time-steps of the forecast. The forecast horizon is also called the prediction length. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withForecastHorizon(Integer forecastHorizon) { setForecastHorizon(forecastHorizon); return this; } /** *

* Whether the predictor is set to perform AutoML. *

* * @param performAutoML * Whether the predictor is set to perform AutoML. */ public void setPerformAutoML(Boolean performAutoML) { this.performAutoML = performAutoML; } /** *

* Whether the predictor is set to perform AutoML. *

* * @return Whether the predictor is set to perform AutoML. */ public Boolean getPerformAutoML() { return this.performAutoML; } /** *

* Whether the predictor is set to perform AutoML. *

* * @param performAutoML * Whether the predictor is set to perform AutoML. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withPerformAutoML(Boolean performAutoML) { setPerformAutoML(performAutoML); return this; } /** *

* Whether the predictor is set to perform AutoML. *

* * @return Whether the predictor is set to perform AutoML. */ public Boolean isPerformAutoML() { return this.performAutoML; } /** *

* Whether the predictor is set to perform hyperparameter optimization (HPO). *

* * @param performHPO * Whether the predictor is set to perform hyperparameter optimization (HPO). */ public void setPerformHPO(Boolean performHPO) { this.performHPO = performHPO; } /** *

* Whether the predictor is set to perform hyperparameter optimization (HPO). *

* * @return Whether the predictor is set to perform hyperparameter optimization (HPO). */ public Boolean getPerformHPO() { return this.performHPO; } /** *

* Whether the predictor is set to perform hyperparameter optimization (HPO). *

* * @param performHPO * Whether the predictor is set to perform hyperparameter optimization (HPO). * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withPerformHPO(Boolean performHPO) { setPerformHPO(performHPO); return this; } /** *

* Whether the predictor is set to perform hyperparameter optimization (HPO). *

* * @return Whether the predictor is set to perform hyperparameter optimization (HPO). */ public Boolean isPerformHPO() { return this.performHPO; } /** *

* The default training parameters or overrides selected during model training. If using the AutoML algorithm or if * HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are * returned. For more information, see aws-forecast-choosing-recipes. *

* * @return The default training parameters or overrides selected during model training. If using the AutoML * algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen * hyperparameters are returned. For more information, see aws-forecast-choosing-recipes. */ public java.util.Map getTrainingParameters() { return trainingParameters; } /** *

* The default training parameters or overrides selected during model training. If using the AutoML algorithm or if * HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are * returned. For more information, see aws-forecast-choosing-recipes. *

* * @param trainingParameters * The default training parameters or overrides selected during model training. If using the AutoML algorithm * or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen * hyperparameters are returned. For more information, see aws-forecast-choosing-recipes. */ public void setTrainingParameters(java.util.Map trainingParameters) { this.trainingParameters = trainingParameters; } /** *

* The default training parameters or overrides selected during model training. If using the AutoML algorithm or if * HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are * returned. For more information, see aws-forecast-choosing-recipes. *

* * @param trainingParameters * The default training parameters or overrides selected during model training. If using the AutoML algorithm * or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen * hyperparameters are returned. For more information, see aws-forecast-choosing-recipes. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withTrainingParameters(java.util.Map trainingParameters) { setTrainingParameters(trainingParameters); return this; } public DescribePredictorResult addTrainingParametersEntry(String key, String value) { if (null == this.trainingParameters) { this.trainingParameters = new java.util.HashMap(); } if (this.trainingParameters.containsKey(key)) throw new IllegalArgumentException("Duplicated keys (" + key.toString() + ") are provided."); this.trainingParameters.put(key, value); return this; } /** * Removes all the entries added into TrainingParameters. * * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult clearTrainingParametersEntries() { this.trainingParameters = null; return this; } /** *

* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

* * @param evaluationParameters * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how * to perform the split and the number of iterations. */ public void setEvaluationParameters(EvaluationParameters evaluationParameters) { this.evaluationParameters = evaluationParameters; } /** *

* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

* * @return Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates * a predictor by splitting a dataset into training data and testing data. The evaluation parameters define * how to perform the split and the number of iterations. */ public EvaluationParameters getEvaluationParameters() { return this.evaluationParameters; } /** *

* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

* * @param evaluationParameters * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how * to perform the split and the number of iterations. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withEvaluationParameters(EvaluationParameters evaluationParameters) { setEvaluationParameters(evaluationParameters); return this; } /** *

* The hyperparameter override values for the algorithm. *

* * @param hPOConfig * The hyperparameter override values for the algorithm. */ public void setHPOConfig(HyperParameterTuningJobConfig hPOConfig) { this.hPOConfig = hPOConfig; } /** *

* The hyperparameter override values for the algorithm. *

* * @return The hyperparameter override values for the algorithm. */ public HyperParameterTuningJobConfig getHPOConfig() { return this.hPOConfig; } /** *

* The hyperparameter override values for the algorithm. *

* * @param hPOConfig * The hyperparameter override values for the algorithm. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withHPOConfig(HyperParameterTuningJobConfig hPOConfig) { setHPOConfig(hPOConfig); return this; } /** *

* Describes the dataset group that contains the data to use to train the predictor. *

* * @param inputDataConfig * Describes the dataset group that contains the data to use to train the predictor. */ public void setInputDataConfig(InputDataConfig inputDataConfig) { this.inputDataConfig = inputDataConfig; } /** *

* Describes the dataset group that contains the data to use to train the predictor. *

* * @return Describes the dataset group that contains the data to use to train the predictor. */ public InputDataConfig getInputDataConfig() { return this.inputDataConfig; } /** *

* Describes the dataset group that contains the data to use to train the predictor. *

* * @param inputDataConfig * Describes the dataset group that contains the data to use to train the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withInputDataConfig(InputDataConfig inputDataConfig) { setInputDataConfig(inputDataConfig); return this; } /** *

* The featurization configuration. *

* * @param featurizationConfig * The featurization configuration. */ public void setFeaturizationConfig(FeaturizationConfig featurizationConfig) { this.featurizationConfig = featurizationConfig; } /** *

* The featurization configuration. *

* * @return The featurization configuration. */ public FeaturizationConfig getFeaturizationConfig() { return this.featurizationConfig; } /** *

* The featurization configuration. *

* * @param featurizationConfig * The featurization configuration. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withFeaturizationConfig(FeaturizationConfig featurizationConfig) { setFeaturizationConfig(featurizationConfig); return this; } /** *

* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

* * @param encryptionConfig * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. */ public void setEncryptionConfig(EncryptionConfig encryptionConfig) { this.encryptionConfig = encryptionConfig; } /** *

* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

* * @return An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. */ public EncryptionConfig getEncryptionConfig() { return this.encryptionConfig; } /** *

* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

* * @param encryptionConfig * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withEncryptionConfig(EncryptionConfig encryptionConfig) { setEncryptionConfig(encryptionConfig); return this; } /** *

* Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You * specify the number of backtests to perform when you call the operation. *

* * @param predictorExecutionDetails * Details on the the status and results of the backtests performed to evaluate the accuracy of the * predictor. You specify the number of backtests to perform when you call the operation. */ public void setPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails) { this.predictorExecutionDetails = predictorExecutionDetails; } /** *

* Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You * specify the number of backtests to perform when you call the operation. *

* * @return Details on the the status and results of the backtests performed to evaluate the accuracy of the * predictor. You specify the number of backtests to perform when you call the operation. */ public PredictorExecutionDetails getPredictorExecutionDetails() { return this.predictorExecutionDetails; } /** *

* Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You * specify the number of backtests to perform when you call the operation. *

* * @param predictorExecutionDetails * Details on the the status and results of the backtests performed to evaluate the accuracy of the * predictor. You specify the number of backtests to perform when you call the operation. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails) { setPredictorExecutionDetails(predictorExecutionDetails); return this; } /** *

* An array of the ARNs of the dataset import jobs used to import training data for the predictor. *

* * @return An array of the ARNs of the dataset import jobs used to import training data for the predictor. */ public java.util.List getDatasetImportJobArns() { return datasetImportJobArns; } /** *

* An array of the ARNs of the dataset import jobs used to import training data for the predictor. *

* * @param datasetImportJobArns * An array of the ARNs of the dataset import jobs used to import training data for the predictor. */ public void setDatasetImportJobArns(java.util.Collection datasetImportJobArns) { if (datasetImportJobArns == null) { this.datasetImportJobArns = null; return; } this.datasetImportJobArns = new java.util.ArrayList(datasetImportJobArns); } /** *

* An array of the ARNs of the dataset import jobs used to import training data for the predictor. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setDatasetImportJobArns(java.util.Collection)} or {@link #withDatasetImportJobArns(java.util.Collection)} * if you want to override the existing values. *

* * @param datasetImportJobArns * An array of the ARNs of the dataset import jobs used to import training data for the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withDatasetImportJobArns(String... datasetImportJobArns) { if (this.datasetImportJobArns == null) { setDatasetImportJobArns(new java.util.ArrayList(datasetImportJobArns.length)); } for (String ele : datasetImportJobArns) { this.datasetImportJobArns.add(ele); } return this; } /** *

* An array of the ARNs of the dataset import jobs used to import training data for the predictor. *

* * @param datasetImportJobArns * An array of the ARNs of the dataset import jobs used to import training data for the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withDatasetImportJobArns(java.util.Collection datasetImportJobArns) { setDatasetImportJobArns(datasetImportJobArns); return this; } /** *

* When PerformAutoML is specified, the ARN of the chosen algorithm. *

* * @return When PerformAutoML is specified, the ARN of the chosen algorithm. */ public java.util.List getAutoMLAlgorithmArns() { return autoMLAlgorithmArns; } /** *

* When PerformAutoML is specified, the ARN of the chosen algorithm. *

* * @param autoMLAlgorithmArns * When PerformAutoML is specified, the ARN of the chosen algorithm. */ public void setAutoMLAlgorithmArns(java.util.Collection autoMLAlgorithmArns) { if (autoMLAlgorithmArns == null) { this.autoMLAlgorithmArns = null; return; } this.autoMLAlgorithmArns = new java.util.ArrayList(autoMLAlgorithmArns); } /** *

* When PerformAutoML is specified, the ARN of the chosen algorithm. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setAutoMLAlgorithmArns(java.util.Collection)} or {@link #withAutoMLAlgorithmArns(java.util.Collection)} * if you want to override the existing values. *

* * @param autoMLAlgorithmArns * When PerformAutoML is specified, the ARN of the chosen algorithm. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withAutoMLAlgorithmArns(String... autoMLAlgorithmArns) { if (this.autoMLAlgorithmArns == null) { setAutoMLAlgorithmArns(new java.util.ArrayList(autoMLAlgorithmArns.length)); } for (String ele : autoMLAlgorithmArns) { this.autoMLAlgorithmArns.add(ele); } return this; } /** *

* When PerformAutoML is specified, the ARN of the chosen algorithm. *

* * @param autoMLAlgorithmArns * When PerformAutoML is specified, the ARN of the chosen algorithm. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withAutoMLAlgorithmArns(java.util.Collection autoMLAlgorithmArns) { setAutoMLAlgorithmArns(autoMLAlgorithmArns); return this; } /** *

* The status of the predictor. States include: *

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to create a * forecast. *

*
* * @param status * The status of the predictor. States include:

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to * create a forecast. *

*/ public void setStatus(String status) { this.status = status; } /** *

* The status of the predictor. States include: *

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to create a * forecast. *

*
* * @return The status of the predictor. States include:

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to * create a forecast. *

*/ public String getStatus() { return this.status; } /** *

* The status of the predictor. States include: *

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to create a * forecast. *

*
* * @param status * The status of the predictor. States include:

*
    *
  • *

    * ACTIVE *

    *
  • *
  • *

    * CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED *

    *
  • *
  • *

    * DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED *

    *
  • *
  • *

    * UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED *

    *
  • *
* *

* The Status of the predictor must be ACTIVE before you can use the predictor to * create a forecast. *

* @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withStatus(String status) { setStatus(status); return this; } /** *

* If an error occurred, an informational message about the error. *

* * @param message * If an error occurred, an informational message about the error. */ public void setMessage(String message) { this.message = message; } /** *

* If an error occurred, an informational message about the error. *

* * @return If an error occurred, an informational message about the error. */ public String getMessage() { return this.message; } /** *

* If an error occurred, an informational message about the error. *

* * @param message * If an error occurred, an informational message about the error. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withMessage(String message) { setMessage(message); return this; } /** *

* When the model training task was created. *

* * @param creationTime * When the model training task was created. */ public void setCreationTime(java.util.Date creationTime) { this.creationTime = creationTime; } /** *

* When the model training task was created. *

* * @return When the model training task was created. */ public java.util.Date getCreationTime() { return this.creationTime; } /** *

* When the model training task was created. *

* * @param creationTime * When the model training task was created. * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withCreationTime(java.util.Date creationTime) { setCreationTime(creationTime); return this; } /** *

* Initially, the same as CreationTime (when the status is CREATE_PENDING). This value is * updated when training starts (when the status changes to CREATE_IN_PROGRESS), and when training has * completed (when the status changes to ACTIVE) or fails (when the status changes to * CREATE_FAILED). *

* * @param lastModificationTime * Initially, the same as CreationTime (when the status is CREATE_PENDING). This * value is updated when training starts (when the status changes to CREATE_IN_PROGRESS), and * when training has completed (when the status changes to ACTIVE) or fails (when the status * changes to CREATE_FAILED). */ public void setLastModificationTime(java.util.Date lastModificationTime) { this.lastModificationTime = lastModificationTime; } /** *

* Initially, the same as CreationTime (when the status is CREATE_PENDING). This value is * updated when training starts (when the status changes to CREATE_IN_PROGRESS), and when training has * completed (when the status changes to ACTIVE) or fails (when the status changes to * CREATE_FAILED). *

* * @return Initially, the same as CreationTime (when the status is CREATE_PENDING). This * value is updated when training starts (when the status changes to CREATE_IN_PROGRESS), and * when training has completed (when the status changes to ACTIVE) or fails (when the status * changes to CREATE_FAILED). */ public java.util.Date getLastModificationTime() { return this.lastModificationTime; } /** *

* Initially, the same as CreationTime (when the status is CREATE_PENDING). This value is * updated when training starts (when the status changes to CREATE_IN_PROGRESS), and when training has * completed (when the status changes to ACTIVE) or fails (when the status changes to * CREATE_FAILED). *

* * @param lastModificationTime * Initially, the same as CreationTime (when the status is CREATE_PENDING). This * value is updated when training starts (when the status changes to CREATE_IN_PROGRESS), and * when training has completed (when the status changes to ACTIVE) or fails (when the status * changes to CREATE_FAILED). * @return Returns a reference to this object so that method calls can be chained together. */ public DescribePredictorResult withLastModificationTime(java.util.Date lastModificationTime) { setLastModificationTime(lastModificationTime); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getPredictorArn() != null) sb.append("PredictorArn: ").append(getPredictorArn()).append(","); if (getPredictorName() != null) sb.append("PredictorName: ").append(getPredictorName()).append(","); if (getAlgorithmArn() != null) sb.append("AlgorithmArn: ").append(getAlgorithmArn()).append(","); if (getForecastHorizon() != null) sb.append("ForecastHorizon: ").append(getForecastHorizon()).append(","); if (getPerformAutoML() != null) sb.append("PerformAutoML: ").append(getPerformAutoML()).append(","); if (getPerformHPO() != null) sb.append("PerformHPO: ").append(getPerformHPO()).append(","); if (getTrainingParameters() != null) sb.append("TrainingParameters: ").append(getTrainingParameters()).append(","); if (getEvaluationParameters() != null) sb.append("EvaluationParameters: ").append(getEvaluationParameters()).append(","); if (getHPOConfig() != null) sb.append("HPOConfig: ").append(getHPOConfig()).append(","); if (getInputDataConfig() != null) sb.append("InputDataConfig: ").append(getInputDataConfig()).append(","); if (getFeaturizationConfig() != null) sb.append("FeaturizationConfig: ").append(getFeaturizationConfig()).append(","); if (getEncryptionConfig() != null) sb.append("EncryptionConfig: ").append(getEncryptionConfig()).append(","); if (getPredictorExecutionDetails() != null) sb.append("PredictorExecutionDetails: ").append(getPredictorExecutionDetails()).append(","); if (getDatasetImportJobArns() != null) sb.append("DatasetImportJobArns: ").append(getDatasetImportJobArns()).append(","); if (getAutoMLAlgorithmArns() != null) sb.append("AutoMLAlgorithmArns: ").append(getAutoMLAlgorithmArns()).append(","); if (getStatus() != null) sb.append("Status: ").append(getStatus()).append(","); if (getMessage() != null) sb.append("Message: ").append(getMessage()).append(","); if (getCreationTime() != null) sb.append("CreationTime: ").append(getCreationTime()).append(","); if (getLastModificationTime() != null) sb.append("LastModificationTime: ").append(getLastModificationTime()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof DescribePredictorResult == false) return false; DescribePredictorResult other = (DescribePredictorResult) obj; if (other.getPredictorArn() == null ^ this.getPredictorArn() == null) return false; if (other.getPredictorArn() != null && other.getPredictorArn().equals(this.getPredictorArn()) == false) return false; if (other.getPredictorName() == null ^ this.getPredictorName() == null) return false; if (other.getPredictorName() != null && other.getPredictorName().equals(this.getPredictorName()) == false) return false; if (other.getAlgorithmArn() == null ^ this.getAlgorithmArn() == null) return false; if (other.getAlgorithmArn() != null && other.getAlgorithmArn().equals(this.getAlgorithmArn()) == false) return false; if (other.getForecastHorizon() == null ^ this.getForecastHorizon() == null) return false; if (other.getForecastHorizon() != null && other.getForecastHorizon().equals(this.getForecastHorizon()) == false) return false; if (other.getPerformAutoML() == null ^ this.getPerformAutoML() == null) return false; if (other.getPerformAutoML() != null && other.getPerformAutoML().equals(this.getPerformAutoML()) == false) return false; if (other.getPerformHPO() == null ^ this.getPerformHPO() == null) return false; if (other.getPerformHPO() != null && other.getPerformHPO().equals(this.getPerformHPO()) == false) return false; if (other.getTrainingParameters() == null ^ this.getTrainingParameters() == null) return false; if (other.getTrainingParameters() != null && other.getTrainingParameters().equals(this.getTrainingParameters()) == false) return false; if (other.getEvaluationParameters() == null ^ this.getEvaluationParameters() == null) return false; if (other.getEvaluationParameters() != null && other.getEvaluationParameters().equals(this.getEvaluationParameters()) == false) return false; if (other.getHPOConfig() == null ^ this.getHPOConfig() == null) return false; if (other.getHPOConfig() != null && other.getHPOConfig().equals(this.getHPOConfig()) == false) return false; if (other.getInputDataConfig() == null ^ this.getInputDataConfig() == null) return false; if (other.getInputDataConfig() != null && other.getInputDataConfig().equals(this.getInputDataConfig()) == false) return false; if (other.getFeaturizationConfig() == null ^ this.getFeaturizationConfig() == null) return false; if (other.getFeaturizationConfig() != null && other.getFeaturizationConfig().equals(this.getFeaturizationConfig()) == false) return false; if (other.getEncryptionConfig() == null ^ this.getEncryptionConfig() == null) return false; if (other.getEncryptionConfig() != null && other.getEncryptionConfig().equals(this.getEncryptionConfig()) == false) return false; if (other.getPredictorExecutionDetails() == null ^ this.getPredictorExecutionDetails() == null) return false; if (other.getPredictorExecutionDetails() != null && other.getPredictorExecutionDetails().equals(this.getPredictorExecutionDetails()) == false) return false; if (other.getDatasetImportJobArns() == null ^ this.getDatasetImportJobArns() == null) return false; if (other.getDatasetImportJobArns() != null && other.getDatasetImportJobArns().equals(this.getDatasetImportJobArns()) == false) return false; if (other.getAutoMLAlgorithmArns() == null ^ this.getAutoMLAlgorithmArns() == null) return false; if (other.getAutoMLAlgorithmArns() != null && other.getAutoMLAlgorithmArns().equals(this.getAutoMLAlgorithmArns()) == false) return false; if (other.getStatus() == null ^ this.getStatus() == null) return false; if (other.getStatus() != null && other.getStatus().equals(this.getStatus()) == false) return false; if (other.getMessage() == null ^ this.getMessage() == null) return false; if (other.getMessage() != null && other.getMessage().equals(this.getMessage()) == false) return false; if (other.getCreationTime() == null ^ this.getCreationTime() == null) return false; if (other.getCreationTime() != null && other.getCreationTime().equals(this.getCreationTime()) == false) return false; if (other.getLastModificationTime() == null ^ this.getLastModificationTime() == null) return false; if (other.getLastModificationTime() != null && other.getLastModificationTime().equals(this.getLastModificationTime()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getPredictorArn() == null) ? 0 : getPredictorArn().hashCode()); hashCode = prime * hashCode + ((getPredictorName() == null) ? 0 : getPredictorName().hashCode()); hashCode = prime * hashCode + ((getAlgorithmArn() == null) ? 0 : getAlgorithmArn().hashCode()); hashCode = prime * hashCode + ((getForecastHorizon() == null) ? 0 : getForecastHorizon().hashCode()); hashCode = prime * hashCode + ((getPerformAutoML() == null) ? 0 : getPerformAutoML().hashCode()); hashCode = prime * hashCode + ((getPerformHPO() == null) ? 0 : getPerformHPO().hashCode()); hashCode = prime * hashCode + ((getTrainingParameters() == null) ? 0 : getTrainingParameters().hashCode()); hashCode = prime * hashCode + ((getEvaluationParameters() == null) ? 0 : getEvaluationParameters().hashCode()); hashCode = prime * hashCode + ((getHPOConfig() == null) ? 0 : getHPOConfig().hashCode()); hashCode = prime * hashCode + ((getInputDataConfig() == null) ? 0 : getInputDataConfig().hashCode()); hashCode = prime * hashCode + ((getFeaturizationConfig() == null) ? 0 : getFeaturizationConfig().hashCode()); hashCode = prime * hashCode + ((getEncryptionConfig() == null) ? 0 : getEncryptionConfig().hashCode()); hashCode = prime * hashCode + ((getPredictorExecutionDetails() == null) ? 0 : getPredictorExecutionDetails().hashCode()); hashCode = prime * hashCode + ((getDatasetImportJobArns() == null) ? 0 : getDatasetImportJobArns().hashCode()); hashCode = prime * hashCode + ((getAutoMLAlgorithmArns() == null) ? 0 : getAutoMLAlgorithmArns().hashCode()); hashCode = prime * hashCode + ((getStatus() == null) ? 0 : getStatus().hashCode()); hashCode = prime * hashCode + ((getMessage() == null) ? 0 : getMessage().hashCode()); hashCode = prime * hashCode + ((getCreationTime() == null) ? 0 : getCreationTime().hashCode()); hashCode = prime * hashCode + ((getLastModificationTime() == null) ? 0 : getLastModificationTime().hashCode()); return hashCode; } @Override public DescribePredictorResult clone() { try { return (DescribePredictorResult) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy