All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.EvaluationParameters Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Forecast module holds the client classes that are used for communicating with Amazon Forecast Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Parameters that define how to split a dataset into training data and testing data, and the number of iterations to * perform. These parameters are specified in the predefined algorithms but you can override them in the * CreatePredictor request. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class EvaluationParameters implements Serializable, Cloneable, StructuredPojo { /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

*/ private Integer numberOfBacktestWindows; /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. * BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be * greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length *

*/ private Integer backTestWindowOffset; /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

* * @param numberOfBacktestWindows * The number of times to split the input data. The default is 1. Valid values are 1 through 5. */ public void setNumberOfBacktestWindows(Integer numberOfBacktestWindows) { this.numberOfBacktestWindows = numberOfBacktestWindows; } /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

* * @return The number of times to split the input data. The default is 1. Valid values are 1 through 5. */ public Integer getNumberOfBacktestWindows() { return this.numberOfBacktestWindows; } /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

* * @param numberOfBacktestWindows * The number of times to split the input data. The default is 1. Valid values are 1 through 5. * @return Returns a reference to this object so that method calls can be chained together. */ public EvaluationParameters withNumberOfBacktestWindows(Integer numberOfBacktestWindows) { setNumberOfBacktestWindows(numberOfBacktestWindows); return this; } /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. * BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be * greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length *

* * @param backTestWindowOffset * The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This * value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES * dataset length.

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset * length */ public void setBackTestWindowOffset(Integer backTestWindowOffset) { this.backTestWindowOffset = backTestWindowOffset; } /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. * BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be * greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length *

* * @return The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This * value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES * dataset length.

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES * dataset length */ public Integer getBackTestWindowOffset() { return this.backTestWindowOffset; } /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. * BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be * greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length *

* * @param backTestWindowOffset * The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This * value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES * dataset length.

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset * length * @return Returns a reference to this object so that method calls can be chained together. */ public EvaluationParameters withBackTestWindowOffset(Integer backTestWindowOffset) { setBackTestWindowOffset(backTestWindowOffset); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getNumberOfBacktestWindows() != null) sb.append("NumberOfBacktestWindows: ").append(getNumberOfBacktestWindows()).append(","); if (getBackTestWindowOffset() != null) sb.append("BackTestWindowOffset: ").append(getBackTestWindowOffset()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof EvaluationParameters == false) return false; EvaluationParameters other = (EvaluationParameters) obj; if (other.getNumberOfBacktestWindows() == null ^ this.getNumberOfBacktestWindows() == null) return false; if (other.getNumberOfBacktestWindows() != null && other.getNumberOfBacktestWindows().equals(this.getNumberOfBacktestWindows()) == false) return false; if (other.getBackTestWindowOffset() == null ^ this.getBackTestWindowOffset() == null) return false; if (other.getBackTestWindowOffset() != null && other.getBackTestWindowOffset().equals(this.getBackTestWindowOffset()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getNumberOfBacktestWindows() == null) ? 0 : getNumberOfBacktestWindows().hashCode()); hashCode = prime * hashCode + ((getBackTestWindowOffset() == null) ? 0 : getBackTestWindowOffset().hashCode()); return hashCode; } @Override public EvaluationParameters clone() { try { return (EvaluationParameters) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.forecast.model.transform.EvaluationParametersMarshaller.getInstance().marshall(this, protocolMarshaller); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy