All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.HyperParameterTuningJobConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Forecast module holds the client classes that are used for communicating with Amazon Forecast Service

There is a newer version: 1.12.772
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Configuration information for a hyperparameter tuning job. You specify this object in the CreatePredictor * request. *

*

* A hyperparameter is a parameter that governs the model training process. You set hyperparameters before * training starts, unlike model parameters, which are determined during training. The values of the hyperparameters * effect which values are chosen for the model parameters. *

*

* In a hyperparameter tuning job, Amazon Forecast chooses the set of hyperparameter values that optimize a * specified metric. Forecast accomplishes this by running many training jobs over a range of hyperparameter values. The * optimum set of values depends on the algorithm, the training data, and the specified metric objective. *

* * @see AWS API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class HyperParameterTuningJobConfig implements Serializable, Cloneable, StructuredPojo { /** *

* Specifies the ranges of valid values for the hyperparameters. *

*/ private ParameterRanges parameterRanges; /** *

* Specifies the ranges of valid values for the hyperparameters. *

* * @param parameterRanges * Specifies the ranges of valid values for the hyperparameters. */ public void setParameterRanges(ParameterRanges parameterRanges) { this.parameterRanges = parameterRanges; } /** *

* Specifies the ranges of valid values for the hyperparameters. *

* * @return Specifies the ranges of valid values for the hyperparameters. */ public ParameterRanges getParameterRanges() { return this.parameterRanges; } /** *

* Specifies the ranges of valid values for the hyperparameters. *

* * @param parameterRanges * Specifies the ranges of valid values for the hyperparameters. * @return Returns a reference to this object so that method calls can be chained together. */ public HyperParameterTuningJobConfig withParameterRanges(ParameterRanges parameterRanges) { setParameterRanges(parameterRanges); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getParameterRanges() != null) sb.append("ParameterRanges: ").append(getParameterRanges()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof HyperParameterTuningJobConfig == false) return false; HyperParameterTuningJobConfig other = (HyperParameterTuningJobConfig) obj; if (other.getParameterRanges() == null ^ this.getParameterRanges() == null) return false; if (other.getParameterRanges() != null && other.getParameterRanges().equals(this.getParameterRanges()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getParameterRanges() == null) ? 0 : getParameterRanges().hashCode()); return hashCode; } @Override public HyperParameterTuningJobConfig clone() { try { return (HyperParameterTuningJobConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.forecast.model.transform.HyperParameterTuningJobConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy