All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.Featurization Maven / Gradle / Ivy

/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 
 * 

* This object belongs to the CreatePredictor operation. If you created your predictor with * CreateAutoPredictor, see AttributeConfig. *

*
*

* Provides featurization (transformation) information for a dataset field. This object is part of the * FeaturizationConfig object. *

*

* For example: *

*

* { *

*

* "AttributeName": "demand", *

*

* FeaturizationPipeline [ { *

*

* "FeaturizationMethodName": "filling", *

*

* "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"} *

*

* } ] *

*

* } *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class Featurization implements Serializable, Cloneable, StructuredPojo { /** *

* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the * target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For * example, for the RETAIL domain, the target is demand, and for the CUSTOM * domain, the target is target_value. For more information, see howitworks-missing-values. *

*/ private String attributeName; /** *

* An array of one FeaturizationMethod object that specifies the feature transformation method. *

*/ private java.util.List featurizationPipeline; /** *

* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the * target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For * example, for the RETAIL domain, the target is demand, and for the CUSTOM * domain, the target is target_value. For more information, see howitworks-missing-values. *

* * @param attributeName * The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports * the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. * For example, for the RETAIL domain, the target is demand, and for the * CUSTOM domain, the target is target_value. For more information, see * howitworks-missing-values. */ public void setAttributeName(String attributeName) { this.attributeName = attributeName; } /** *

* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the * target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For * example, for the RETAIL domain, the target is demand, and for the CUSTOM * domain, the target is target_value. For more information, see howitworks-missing-values. *

* * @return The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports * the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES * datasets. For example, for the RETAIL domain, the target is demand, and for the * CUSTOM domain, the target is target_value. For more information, see * howitworks-missing-values. */ public String getAttributeName() { return this.attributeName; } /** *

* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the * target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For * example, for the RETAIL domain, the target is demand, and for the CUSTOM * domain, the target is target_value. For more information, see howitworks-missing-values. *

* * @param attributeName * The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports * the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. * For example, for the RETAIL domain, the target is demand, and for the * CUSTOM domain, the target is target_value. For more information, see * howitworks-missing-values. * @return Returns a reference to this object so that method calls can be chained together. */ public Featurization withAttributeName(String attributeName) { setAttributeName(attributeName); return this; } /** *

* An array of one FeaturizationMethod object that specifies the feature transformation method. *

* * @return An array of one FeaturizationMethod object that specifies the feature transformation method. */ public java.util.List getFeaturizationPipeline() { return featurizationPipeline; } /** *

* An array of one FeaturizationMethod object that specifies the feature transformation method. *

* * @param featurizationPipeline * An array of one FeaturizationMethod object that specifies the feature transformation method. */ public void setFeaturizationPipeline(java.util.Collection featurizationPipeline) { if (featurizationPipeline == null) { this.featurizationPipeline = null; return; } this.featurizationPipeline = new java.util.ArrayList(featurizationPipeline); } /** *

* An array of one FeaturizationMethod object that specifies the feature transformation method. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setFeaturizationPipeline(java.util.Collection)} or * {@link #withFeaturizationPipeline(java.util.Collection)} if you want to override the existing values. *

* * @param featurizationPipeline * An array of one FeaturizationMethod object that specifies the feature transformation method. * @return Returns a reference to this object so that method calls can be chained together. */ public Featurization withFeaturizationPipeline(FeaturizationMethod... featurizationPipeline) { if (this.featurizationPipeline == null) { setFeaturizationPipeline(new java.util.ArrayList(featurizationPipeline.length)); } for (FeaturizationMethod ele : featurizationPipeline) { this.featurizationPipeline.add(ele); } return this; } /** *

* An array of one FeaturizationMethod object that specifies the feature transformation method. *

* * @param featurizationPipeline * An array of one FeaturizationMethod object that specifies the feature transformation method. * @return Returns a reference to this object so that method calls can be chained together. */ public Featurization withFeaturizationPipeline(java.util.Collection featurizationPipeline) { setFeaturizationPipeline(featurizationPipeline); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAttributeName() != null) sb.append("AttributeName: ").append(getAttributeName()).append(","); if (getFeaturizationPipeline() != null) sb.append("FeaturizationPipeline: ").append(getFeaturizationPipeline()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof Featurization == false) return false; Featurization other = (Featurization) obj; if (other.getAttributeName() == null ^ this.getAttributeName() == null) return false; if (other.getAttributeName() != null && other.getAttributeName().equals(this.getAttributeName()) == false) return false; if (other.getFeaturizationPipeline() == null ^ this.getFeaturizationPipeline() == null) return false; if (other.getFeaturizationPipeline() != null && other.getFeaturizationPipeline().equals(this.getFeaturizationPipeline()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAttributeName() == null) ? 0 : getAttributeName().hashCode()); hashCode = prime * hashCode + ((getFeaturizationPipeline() == null) ? 0 : getFeaturizationPipeline().hashCode()); return hashCode; } @Override public Featurization clone() { try { return (Featurization) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.forecast.model.transform.FeaturizationMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy