com.amazonaws.services.forecast.model.Featurization Maven / Gradle / Ivy
/*
* Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.forecast.model;
import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;
/**
*
*
* This object belongs to the CreatePredictor operation. If you created your predictor with
* CreateAutoPredictor, see AttributeConfig.
*
*
*
* Provides featurization (transformation) information for a dataset field. This object is part of the
* FeaturizationConfig object.
*
*
* For example:
*
*
* {
*
*
* "AttributeName": "demand",
*
*
* FeaturizationPipeline [ {
*
*
* "FeaturizationMethodName": "filling",
*
*
* "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}
*
*
* } ]
*
*
* }
*
*
* @see AWS API
* Documentation
*/
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class Featurization implements Serializable, Cloneable, StructuredPojo {
/**
*
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the
* target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets. For
* example, for the RETAIL
domain, the target is demand
, and for the CUSTOM
* domain, the target is target_value
. For more information, see howitworks-missing-values.
*
*/
private String attributeName;
/**
*
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*
*/
private java.util.List featurizationPipeline;
/**
*
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the
* target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets. For
* example, for the RETAIL
domain, the target is demand
, and for the CUSTOM
* domain, the target is target_value
. For more information, see howitworks-missing-values.
*
*
* @param attributeName
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports
* the target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets.
* For example, for the RETAIL
domain, the target is demand
, and for the
* CUSTOM
domain, the target is target_value
. For more information, see
* howitworks-missing-values.
*/
public void setAttributeName(String attributeName) {
this.attributeName = attributeName;
}
/**
*
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the
* target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets. For
* example, for the RETAIL
domain, the target is demand
, and for the CUSTOM
* domain, the target is target_value
. For more information, see howitworks-missing-values.
*
*
* @return The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports
* the target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
* datasets. For example, for the RETAIL
domain, the target is demand
, and for the
* CUSTOM
domain, the target is target_value
. For more information, see
* howitworks-missing-values.
*/
public String getAttributeName() {
return this.attributeName;
}
/**
*
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the
* target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets. For
* example, for the RETAIL
domain, the target is demand
, and for the CUSTOM
* domain, the target is target_value
. For more information, see howitworks-missing-values.
*
*
* @param attributeName
* The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports
* the target field of the TARGET_TIME_SERIES
and the RELATED_TIME_SERIES
datasets.
* For example, for the RETAIL
domain, the target is demand
, and for the
* CUSTOM
domain, the target is target_value
. For more information, see
* howitworks-missing-values.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public Featurization withAttributeName(String attributeName) {
setAttributeName(attributeName);
return this;
}
/**
*
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*
*
* @return An array of one FeaturizationMethod
object that specifies the feature transformation method.
*/
public java.util.List getFeaturizationPipeline() {
return featurizationPipeline;
}
/**
*
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*
*
* @param featurizationPipeline
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*/
public void setFeaturizationPipeline(java.util.Collection featurizationPipeline) {
if (featurizationPipeline == null) {
this.featurizationPipeline = null;
return;
}
this.featurizationPipeline = new java.util.ArrayList(featurizationPipeline);
}
/**
*
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*
*
* NOTE: This method appends the values to the existing list (if any). Use
* {@link #setFeaturizationPipeline(java.util.Collection)} or
* {@link #withFeaturizationPipeline(java.util.Collection)} if you want to override the existing values.
*
*
* @param featurizationPipeline
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public Featurization withFeaturizationPipeline(FeaturizationMethod... featurizationPipeline) {
if (this.featurizationPipeline == null) {
setFeaturizationPipeline(new java.util.ArrayList(featurizationPipeline.length));
}
for (FeaturizationMethod ele : featurizationPipeline) {
this.featurizationPipeline.add(ele);
}
return this;
}
/**
*
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
*
*
* @param featurizationPipeline
* An array of one FeaturizationMethod
object that specifies the feature transformation method.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public Featurization withFeaturizationPipeline(java.util.Collection featurizationPipeline) {
setFeaturizationPipeline(featurizationPipeline);
return this;
}
/**
* Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be
* redacted from this string using a placeholder value.
*
* @return A string representation of this object.
*
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("{");
if (getAttributeName() != null)
sb.append("AttributeName: ").append(getAttributeName()).append(",");
if (getFeaturizationPipeline() != null)
sb.append("FeaturizationPipeline: ").append(getFeaturizationPipeline());
sb.append("}");
return sb.toString();
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (obj instanceof Featurization == false)
return false;
Featurization other = (Featurization) obj;
if (other.getAttributeName() == null ^ this.getAttributeName() == null)
return false;
if (other.getAttributeName() != null && other.getAttributeName().equals(this.getAttributeName()) == false)
return false;
if (other.getFeaturizationPipeline() == null ^ this.getFeaturizationPipeline() == null)
return false;
if (other.getFeaturizationPipeline() != null && other.getFeaturizationPipeline().equals(this.getFeaturizationPipeline()) == false)
return false;
return true;
}
@Override
public int hashCode() {
final int prime = 31;
int hashCode = 1;
hashCode = prime * hashCode + ((getAttributeName() == null) ? 0 : getAttributeName().hashCode());
hashCode = prime * hashCode + ((getFeaturizationPipeline() == null) ? 0 : getFeaturizationPipeline().hashCode());
return hashCode;
}
@Override
public Featurization clone() {
try {
return (Featurization) super.clone();
} catch (CloneNotSupportedException e) {
throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e);
}
}
@com.amazonaws.annotation.SdkInternalApi
@Override
public void marshall(ProtocolMarshaller protocolMarshaller) {
com.amazonaws.services.forecast.model.transform.FeaturizationMarshaller.getInstance().marshall(this, protocolMarshaller);
}
}