All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.frauddetector.model.TrainingMetrics Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Fraud Detector module holds the client classes that are used for communicating with Amazon Fraud Detector Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.frauddetector.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* The training metric details. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class TrainingMetrics implements Serializable, Cloneable, StructuredPojo { /** *

* The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all * possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has * a score of 1.0. *

*/ private Float auc; /** *

* The data points details. *

*/ private java.util.List metricDataPoints; /** *

* The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all * possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has * a score of 1.0. *

* * @param auc * The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across * all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect * model has a score of 1.0. */ public void setAuc(Float auc) { this.auc = auc; } /** *

* The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all * possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has * a score of 1.0. *

* * @return The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across * all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a * perfect model has a score of 1.0. */ public Float getAuc() { return this.auc; } /** *

* The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all * possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has * a score of 1.0. *

* * @param auc * The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across * all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect * model has a score of 1.0. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingMetrics withAuc(Float auc) { setAuc(auc); return this; } /** *

* The data points details. *

* * @return The data points details. */ public java.util.List getMetricDataPoints() { return metricDataPoints; } /** *

* The data points details. *

* * @param metricDataPoints * The data points details. */ public void setMetricDataPoints(java.util.Collection metricDataPoints) { if (metricDataPoints == null) { this.metricDataPoints = null; return; } this.metricDataPoints = new java.util.ArrayList(metricDataPoints); } /** *

* The data points details. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setMetricDataPoints(java.util.Collection)} or {@link #withMetricDataPoints(java.util.Collection)} if you * want to override the existing values. *

* * @param metricDataPoints * The data points details. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingMetrics withMetricDataPoints(MetricDataPoint... metricDataPoints) { if (this.metricDataPoints == null) { setMetricDataPoints(new java.util.ArrayList(metricDataPoints.length)); } for (MetricDataPoint ele : metricDataPoints) { this.metricDataPoints.add(ele); } return this; } /** *

* The data points details. *

* * @param metricDataPoints * The data points details. * @return Returns a reference to this object so that method calls can be chained together. */ public TrainingMetrics withMetricDataPoints(java.util.Collection metricDataPoints) { setMetricDataPoints(metricDataPoints); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAuc() != null) sb.append("Auc: ").append(getAuc()).append(","); if (getMetricDataPoints() != null) sb.append("MetricDataPoints: ").append(getMetricDataPoints()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof TrainingMetrics == false) return false; TrainingMetrics other = (TrainingMetrics) obj; if (other.getAuc() == null ^ this.getAuc() == null) return false; if (other.getAuc() != null && other.getAuc().equals(this.getAuc()) == false) return false; if (other.getMetricDataPoints() == null ^ this.getMetricDataPoints() == null) return false; if (other.getMetricDataPoints() != null && other.getMetricDataPoints().equals(this.getMetricDataPoints()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAuc() == null) ? 0 : getAuc().hashCode()); hashCode = prime * hashCode + ((getMetricDataPoints() == null) ? 0 : getMetricDataPoints().hashCode()); return hashCode; } @Override public TrainingMetrics clone() { try { return (TrainingMetrics) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.frauddetector.model.transform.TrainingMetricsMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy