com.amazonaws.services.kinesisanalyticsv2.model.ParallelismConfiguration Maven / Gradle / Ivy
/*
* Copyright 2014-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.kinesisanalyticsv2.model;
import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;
/**
*
* Describes parameters for how a Java-based Amazon Kinesis Data Analytics application executes multiple tasks
* simultaneously. For more information about parallelism, see Parallel Execution in the Apache Flink Documentation.
*
*
* @see AWS API Documentation
*/
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class ParallelismConfiguration implements Serializable, Cloneable, StructuredPojo {
/**
*
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
*
*/
private String configurationType;
/**
*
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform.
* The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*
*/
private Integer parallelism;
/**
*
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per
* Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*
*/
private Integer parallelismPerKPU;
/**
*
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response
* to increased throughput.
*
*/
private Boolean autoScalingEnabled;
/**
*
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
*
*
* @param configurationType
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
* @see ConfigurationType
*/
public void setConfigurationType(String configurationType) {
this.configurationType = configurationType;
}
/**
*
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
*
*
* @return Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
* @see ConfigurationType
*/
public String getConfigurationType() {
return this.configurationType;
}
/**
*
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
*
*
* @param configurationType
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
* @return Returns a reference to this object so that method calls can be chained together.
* @see ConfigurationType
*/
public ParallelismConfiguration withConfigurationType(String configurationType) {
setConfigurationType(configurationType);
return this;
}
/**
*
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
*
*
* @param configurationType
* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service.
* @return Returns a reference to this object so that method calls can be chained together.
* @see ConfigurationType
*/
public ParallelismConfiguration withConfigurationType(ConfigurationType configurationType) {
this.configurationType = configurationType.toString();
return this;
}
/**
*
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform.
* The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*
*
* @param parallelism
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can
* perform. The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*/
public void setParallelism(Integer parallelism) {
this.parallelism = parallelism;
}
/**
*
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform.
* The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*
*
* @return Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can
* perform. The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*/
public Integer getParallelism() {
return this.parallelism;
}
/**
*
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform.
* The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
*
*
* @param parallelism
* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can
* perform. The Kinesis Data Analytics service can increase this number automatically if
* ParallelismConfiguration$AutoScalingEnabled is set to true
.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ParallelismConfiguration withParallelism(Integer parallelism) {
setParallelism(parallelism);
return this;
}
/**
*
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per
* Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*
*
* @param parallelismPerKPU
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform
* per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*/
public void setParallelismPerKPU(Integer parallelismPerKPU) {
this.parallelismPerKPU = parallelismPerKPU;
}
/**
*
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per
* Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*
*
* @return Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform
* per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*/
public Integer getParallelismPerKPU() {
return this.parallelismPerKPU;
}
/**
*
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per
* Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
*
*
* @param parallelismPerKPU
* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform
* per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ParallelismConfiguration withParallelismPerKPU(Integer parallelismPerKPU) {
setParallelismPerKPU(parallelismPerKPU);
return this;
}
/**
*
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response
* to increased throughput.
*
*
* @param autoScalingEnabled
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in
* response to increased throughput.
*/
public void setAutoScalingEnabled(Boolean autoScalingEnabled) {
this.autoScalingEnabled = autoScalingEnabled;
}
/**
*
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response
* to increased throughput.
*
*
* @return Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in
* response to increased throughput.
*/
public Boolean getAutoScalingEnabled() {
return this.autoScalingEnabled;
}
/**
*
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response
* to increased throughput.
*
*
* @param autoScalingEnabled
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in
* response to increased throughput.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ParallelismConfiguration withAutoScalingEnabled(Boolean autoScalingEnabled) {
setAutoScalingEnabled(autoScalingEnabled);
return this;
}
/**
*
* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response
* to increased throughput.
*
*
* @return Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in
* response to increased throughput.
*/
public Boolean isAutoScalingEnabled() {
return this.autoScalingEnabled;
}
/**
* Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be
* redacted from this string using a placeholder value.
*
* @return A string representation of this object.
*
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("{");
if (getConfigurationType() != null)
sb.append("ConfigurationType: ").append(getConfigurationType()).append(",");
if (getParallelism() != null)
sb.append("Parallelism: ").append(getParallelism()).append(",");
if (getParallelismPerKPU() != null)
sb.append("ParallelismPerKPU: ").append(getParallelismPerKPU()).append(",");
if (getAutoScalingEnabled() != null)
sb.append("AutoScalingEnabled: ").append(getAutoScalingEnabled());
sb.append("}");
return sb.toString();
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (obj instanceof ParallelismConfiguration == false)
return false;
ParallelismConfiguration other = (ParallelismConfiguration) obj;
if (other.getConfigurationType() == null ^ this.getConfigurationType() == null)
return false;
if (other.getConfigurationType() != null && other.getConfigurationType().equals(this.getConfigurationType()) == false)
return false;
if (other.getParallelism() == null ^ this.getParallelism() == null)
return false;
if (other.getParallelism() != null && other.getParallelism().equals(this.getParallelism()) == false)
return false;
if (other.getParallelismPerKPU() == null ^ this.getParallelismPerKPU() == null)
return false;
if (other.getParallelismPerKPU() != null && other.getParallelismPerKPU().equals(this.getParallelismPerKPU()) == false)
return false;
if (other.getAutoScalingEnabled() == null ^ this.getAutoScalingEnabled() == null)
return false;
if (other.getAutoScalingEnabled() != null && other.getAutoScalingEnabled().equals(this.getAutoScalingEnabled()) == false)
return false;
return true;
}
@Override
public int hashCode() {
final int prime = 31;
int hashCode = 1;
hashCode = prime * hashCode + ((getConfigurationType() == null) ? 0 : getConfigurationType().hashCode());
hashCode = prime * hashCode + ((getParallelism() == null) ? 0 : getParallelism().hashCode());
hashCode = prime * hashCode + ((getParallelismPerKPU() == null) ? 0 : getParallelismPerKPU().hashCode());
hashCode = prime * hashCode + ((getAutoScalingEnabled() == null) ? 0 : getAutoScalingEnabled().hashCode());
return hashCode;
}
@Override
public ParallelismConfiguration clone() {
try {
return (ParallelismConfiguration) super.clone();
} catch (CloneNotSupportedException e) {
throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e);
}
}
@com.amazonaws.annotation.SdkInternalApi
@Override
public void marshall(ProtocolMarshaller protocolMarshaller) {
com.amazonaws.services.kinesisanalyticsv2.model.transform.ParallelismConfigurationMarshaller.getInstance().marshall(this, protocolMarshaller);
}
}