All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.kinesisanalyticsv2.model.ParallelismConfiguration Maven / Gradle / Ivy

/*
 * Copyright 2014-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.kinesisanalyticsv2.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Describes parameters for how a Java-based Amazon Kinesis Data Analytics application executes multiple tasks * simultaneously. For more information about parallelism, see Parallel Execution in the Apache Flink Documentation. *

* * @see AWS API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ParallelismConfiguration implements Serializable, Cloneable, StructuredPojo { /** *

* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. *

*/ private String configurationType; /** *

* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform. * The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. *

*/ private Integer parallelism; /** *

* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per * Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. *

*/ private Integer parallelismPerKPU; /** *

* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response * to increased throughput. *

*/ private Boolean autoScalingEnabled; /** *

* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. *

* * @param configurationType * Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. * @see ConfigurationType */ public void setConfigurationType(String configurationType) { this.configurationType = configurationType; } /** *

* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. *

* * @return Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. * @see ConfigurationType */ public String getConfigurationType() { return this.configurationType; } /** *

* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. *

* * @param configurationType * Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. * @return Returns a reference to this object so that method calls can be chained together. * @see ConfigurationType */ public ParallelismConfiguration withConfigurationType(String configurationType) { setConfigurationType(configurationType); return this; } /** *

* Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. *

* * @param configurationType * Describes whether the application uses the default parallelism for the Kinesis Data Analytics service. * @return Returns a reference to this object so that method calls can be chained together. * @see ConfigurationType */ public ParallelismConfiguration withConfigurationType(ConfigurationType configurationType) { this.configurationType = configurationType.toString(); return this; } /** *

* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform. * The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. *

* * @param parallelism * Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can * perform. The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. */ public void setParallelism(Integer parallelism) { this.parallelism = parallelism; } /** *

* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform. * The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. *

* * @return Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can * perform. The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. */ public Integer getParallelism() { return this.parallelism; } /** *

* Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform. * The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. *

* * @param parallelism * Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can * perform. The Kinesis Data Analytics service can increase this number automatically if * ParallelismConfiguration$AutoScalingEnabled is set to true. * @return Returns a reference to this object so that method calls can be chained together. */ public ParallelismConfiguration withParallelism(Integer parallelism) { setParallelism(parallelism); return this; } /** *

* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per * Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. *

* * @param parallelismPerKPU * Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform * per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. */ public void setParallelismPerKPU(Integer parallelismPerKPU) { this.parallelismPerKPU = parallelismPerKPU; } /** *

* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per * Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. *

* * @return Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform * per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. */ public Integer getParallelismPerKPU() { return this.parallelismPerKPU; } /** *

* Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per * Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. *

* * @param parallelismPerKPU * Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform * per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing. * @return Returns a reference to this object so that method calls can be chained together. */ public ParallelismConfiguration withParallelismPerKPU(Integer parallelismPerKPU) { setParallelismPerKPU(parallelismPerKPU); return this; } /** *

* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response * to increased throughput. *

* * @param autoScalingEnabled * Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in * response to increased throughput. */ public void setAutoScalingEnabled(Boolean autoScalingEnabled) { this.autoScalingEnabled = autoScalingEnabled; } /** *

* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response * to increased throughput. *

* * @return Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in * response to increased throughput. */ public Boolean getAutoScalingEnabled() { return this.autoScalingEnabled; } /** *

* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response * to increased throughput. *

* * @param autoScalingEnabled * Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in * response to increased throughput. * @return Returns a reference to this object so that method calls can be chained together. */ public ParallelismConfiguration withAutoScalingEnabled(Boolean autoScalingEnabled) { setAutoScalingEnabled(autoScalingEnabled); return this; } /** *

* Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in response * to increased throughput. *

* * @return Describes whether the Kinesis Data Analytics service can increase the parallelism of the application in * response to increased throughput. */ public Boolean isAutoScalingEnabled() { return this.autoScalingEnabled; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getConfigurationType() != null) sb.append("ConfigurationType: ").append(getConfigurationType()).append(","); if (getParallelism() != null) sb.append("Parallelism: ").append(getParallelism()).append(","); if (getParallelismPerKPU() != null) sb.append("ParallelismPerKPU: ").append(getParallelismPerKPU()).append(","); if (getAutoScalingEnabled() != null) sb.append("AutoScalingEnabled: ").append(getAutoScalingEnabled()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof ParallelismConfiguration == false) return false; ParallelismConfiguration other = (ParallelismConfiguration) obj; if (other.getConfigurationType() == null ^ this.getConfigurationType() == null) return false; if (other.getConfigurationType() != null && other.getConfigurationType().equals(this.getConfigurationType()) == false) return false; if (other.getParallelism() == null ^ this.getParallelism() == null) return false; if (other.getParallelism() != null && other.getParallelism().equals(this.getParallelism()) == false) return false; if (other.getParallelismPerKPU() == null ^ this.getParallelismPerKPU() == null) return false; if (other.getParallelismPerKPU() != null && other.getParallelismPerKPU().equals(this.getParallelismPerKPU()) == false) return false; if (other.getAutoScalingEnabled() == null ^ this.getAutoScalingEnabled() == null) return false; if (other.getAutoScalingEnabled() != null && other.getAutoScalingEnabled().equals(this.getAutoScalingEnabled()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getConfigurationType() == null) ? 0 : getConfigurationType().hashCode()); hashCode = prime * hashCode + ((getParallelism() == null) ? 0 : getParallelism().hashCode()); hashCode = prime * hashCode + ((getParallelismPerKPU() == null) ? 0 : getParallelismPerKPU().hashCode()); hashCode = prime * hashCode + ((getAutoScalingEnabled() == null) ? 0 : getAutoScalingEnabled().hashCode()); return hashCode; } @Override public ParallelismConfiguration clone() { try { return (ParallelismConfiguration) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.kinesisanalyticsv2.model.transform.ParallelismConfigurationMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy