com.amazonaws.services.kms.model.ReEncryptResult Maven / Gradle / Ivy
Show all versions of aws-java-sdk-kms Show documentation
/*
* Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.kms.model;
import java.io.Serializable;
import javax.annotation.Generated;
/**
*
* @see AWS API
* Documentation
*/
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class ReEncryptResult extends com.amazonaws.AmazonWebServiceResult implements Serializable, Cloneable {
/**
*
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is Base64-encoded.
* Otherwise, it is not Base64-encoded.
*
*/
private java.nio.ByteBuffer ciphertextBlob;
/**
*
* Unique identifier of the KMS key used to originally encrypt the data.
*
*/
private String sourceKeyId;
/**
*
* The Amazon Resource Name (key ARN) of the KMS
* key that was used to reencrypt the data.
*
*/
private String keyId;
/**
*
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
*
*/
private String sourceEncryptionAlgorithm;
/**
*
* The encryption algorithm that was used to reencrypt the data.
*
*/
private String destinationEncryptionAlgorithm;
/**
*
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is Base64-encoded.
* Otherwise, it is not Base64-encoded.
*
*
* The AWS SDK for Java performs a Base64 encoding on this field before sending this request to the AWS service.
* Users of the SDK should not perform Base64 encoding on this field.
*
*
* Warning: ByteBuffers returned by the SDK are mutable. Changes to the content or position of the byte buffer will
* be seen by all objects that have a reference to this object. It is recommended to call ByteBuffer.duplicate() or
* ByteBuffer.asReadOnlyBuffer() before using or reading from the buffer. This behavior will be changed in a future
* major version of the SDK.
*
*
* @param ciphertextBlob
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is
* Base64-encoded. Otherwise, it is not Base64-encoded.
*/
public void setCiphertextBlob(java.nio.ByteBuffer ciphertextBlob) {
this.ciphertextBlob = ciphertextBlob;
}
/**
*
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is Base64-encoded.
* Otherwise, it is not Base64-encoded.
*
*
* {@code ByteBuffer}s are stateful. Calling their {@code get} methods changes their {@code position}. We recommend
* using {@link java.nio.ByteBuffer#asReadOnlyBuffer()} to create a read-only view of the buffer with an independent
* {@code position}, and calling {@code get} methods on this rather than directly on the returned {@code ByteBuffer}.
* Doing so will ensure that anyone else using the {@code ByteBuffer} will not be affected by changes to the
* {@code position}.
*
*
* @return The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is
* Base64-encoded. Otherwise, it is not Base64-encoded.
*/
public java.nio.ByteBuffer getCiphertextBlob() {
return this.ciphertextBlob;
}
/**
*
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is Base64-encoded.
* Otherwise, it is not Base64-encoded.
*
*
* The AWS SDK for Java performs a Base64 encoding on this field before sending this request to the AWS service.
* Users of the SDK should not perform Base64 encoding on this field.
*
*
* Warning: ByteBuffers returned by the SDK are mutable. Changes to the content or position of the byte buffer will
* be seen by all objects that have a reference to this object. It is recommended to call ByteBuffer.duplicate() or
* ByteBuffer.asReadOnlyBuffer() before using or reading from the buffer. This behavior will be changed in a future
* major version of the SDK.
*
*
* @param ciphertextBlob
* The reencrypted data. When you use the HTTP API or the Amazon Web Services CLI, the value is
* Base64-encoded. Otherwise, it is not Base64-encoded.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ReEncryptResult withCiphertextBlob(java.nio.ByteBuffer ciphertextBlob) {
setCiphertextBlob(ciphertextBlob);
return this;
}
/**
*
* Unique identifier of the KMS key used to originally encrypt the data.
*
*
* @param sourceKeyId
* Unique identifier of the KMS key used to originally encrypt the data.
*/
public void setSourceKeyId(String sourceKeyId) {
this.sourceKeyId = sourceKeyId;
}
/**
*
* Unique identifier of the KMS key used to originally encrypt the data.
*
*
* @return Unique identifier of the KMS key used to originally encrypt the data.
*/
public String getSourceKeyId() {
return this.sourceKeyId;
}
/**
*
* Unique identifier of the KMS key used to originally encrypt the data.
*
*
* @param sourceKeyId
* Unique identifier of the KMS key used to originally encrypt the data.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ReEncryptResult withSourceKeyId(String sourceKeyId) {
setSourceKeyId(sourceKeyId);
return this;
}
/**
*
* The Amazon Resource Name (key ARN) of the KMS
* key that was used to reencrypt the data.
*
*
* @param keyId
* The Amazon Resource Name (key ARN) of
* the KMS key that was used to reencrypt the data.
*/
public void setKeyId(String keyId) {
this.keyId = keyId;
}
/**
*
* The Amazon Resource Name (key ARN) of the KMS
* key that was used to reencrypt the data.
*
*
* @return The Amazon Resource Name (key ARN) of
* the KMS key that was used to reencrypt the data.
*/
public String getKeyId() {
return this.keyId;
}
/**
*
* The Amazon Resource Name (key ARN) of the KMS
* key that was used to reencrypt the data.
*
*
* @param keyId
* The Amazon Resource Name (key ARN) of
* the KMS key that was used to reencrypt the data.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public ReEncryptResult withKeyId(String keyId) {
setKeyId(keyId);
return this;
}
/**
*
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
*
*
* @param sourceEncryptionAlgorithm
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
* @see EncryptionAlgorithmSpec
*/
public void setSourceEncryptionAlgorithm(String sourceEncryptionAlgorithm) {
this.sourceEncryptionAlgorithm = sourceEncryptionAlgorithm;
}
/**
*
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
*
*
* @return The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
* @see EncryptionAlgorithmSpec
*/
public String getSourceEncryptionAlgorithm() {
return this.sourceEncryptionAlgorithm;
}
/**
*
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
*
*
* @param sourceEncryptionAlgorithm
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
* @return Returns a reference to this object so that method calls can be chained together.
* @see EncryptionAlgorithmSpec
*/
public ReEncryptResult withSourceEncryptionAlgorithm(String sourceEncryptionAlgorithm) {
setSourceEncryptionAlgorithm(sourceEncryptionAlgorithm);
return this;
}
/**
*
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
*
*
* @param sourceEncryptionAlgorithm
* The encryption algorithm that was used to decrypt the ciphertext before it was reencrypted.
* @return Returns a reference to this object so that method calls can be chained together.
* @see EncryptionAlgorithmSpec
*/
public ReEncryptResult withSourceEncryptionAlgorithm(EncryptionAlgorithmSpec sourceEncryptionAlgorithm) {
this.sourceEncryptionAlgorithm = sourceEncryptionAlgorithm.toString();
return this;
}
/**
*
* The encryption algorithm that was used to reencrypt the data.
*
*
* @param destinationEncryptionAlgorithm
* The encryption algorithm that was used to reencrypt the data.
* @see EncryptionAlgorithmSpec
*/
public void setDestinationEncryptionAlgorithm(String destinationEncryptionAlgorithm) {
this.destinationEncryptionAlgorithm = destinationEncryptionAlgorithm;
}
/**
*
* The encryption algorithm that was used to reencrypt the data.
*
*
* @return The encryption algorithm that was used to reencrypt the data.
* @see EncryptionAlgorithmSpec
*/
public String getDestinationEncryptionAlgorithm() {
return this.destinationEncryptionAlgorithm;
}
/**
*
* The encryption algorithm that was used to reencrypt the data.
*
*
* @param destinationEncryptionAlgorithm
* The encryption algorithm that was used to reencrypt the data.
* @return Returns a reference to this object so that method calls can be chained together.
* @see EncryptionAlgorithmSpec
*/
public ReEncryptResult withDestinationEncryptionAlgorithm(String destinationEncryptionAlgorithm) {
setDestinationEncryptionAlgorithm(destinationEncryptionAlgorithm);
return this;
}
/**
*
* The encryption algorithm that was used to reencrypt the data.
*
*
* @param destinationEncryptionAlgorithm
* The encryption algorithm that was used to reencrypt the data.
* @return Returns a reference to this object so that method calls can be chained together.
* @see EncryptionAlgorithmSpec
*/
public ReEncryptResult withDestinationEncryptionAlgorithm(EncryptionAlgorithmSpec destinationEncryptionAlgorithm) {
this.destinationEncryptionAlgorithm = destinationEncryptionAlgorithm.toString();
return this;
}
/**
* Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be
* redacted from this string using a placeholder value.
*
* @return A string representation of this object.
*
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("{");
if (getCiphertextBlob() != null)
sb.append("CiphertextBlob: ").append(getCiphertextBlob()).append(",");
if (getSourceKeyId() != null)
sb.append("SourceKeyId: ").append(getSourceKeyId()).append(",");
if (getKeyId() != null)
sb.append("KeyId: ").append(getKeyId()).append(",");
if (getSourceEncryptionAlgorithm() != null)
sb.append("SourceEncryptionAlgorithm: ").append(getSourceEncryptionAlgorithm()).append(",");
if (getDestinationEncryptionAlgorithm() != null)
sb.append("DestinationEncryptionAlgorithm: ").append(getDestinationEncryptionAlgorithm());
sb.append("}");
return sb.toString();
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (obj instanceof ReEncryptResult == false)
return false;
ReEncryptResult other = (ReEncryptResult) obj;
if (other.getCiphertextBlob() == null ^ this.getCiphertextBlob() == null)
return false;
if (other.getCiphertextBlob() != null && other.getCiphertextBlob().equals(this.getCiphertextBlob()) == false)
return false;
if (other.getSourceKeyId() == null ^ this.getSourceKeyId() == null)
return false;
if (other.getSourceKeyId() != null && other.getSourceKeyId().equals(this.getSourceKeyId()) == false)
return false;
if (other.getKeyId() == null ^ this.getKeyId() == null)
return false;
if (other.getKeyId() != null && other.getKeyId().equals(this.getKeyId()) == false)
return false;
if (other.getSourceEncryptionAlgorithm() == null ^ this.getSourceEncryptionAlgorithm() == null)
return false;
if (other.getSourceEncryptionAlgorithm() != null && other.getSourceEncryptionAlgorithm().equals(this.getSourceEncryptionAlgorithm()) == false)
return false;
if (other.getDestinationEncryptionAlgorithm() == null ^ this.getDestinationEncryptionAlgorithm() == null)
return false;
if (other.getDestinationEncryptionAlgorithm() != null
&& other.getDestinationEncryptionAlgorithm().equals(this.getDestinationEncryptionAlgorithm()) == false)
return false;
return true;
}
@Override
public int hashCode() {
final int prime = 31;
int hashCode = 1;
hashCode = prime * hashCode + ((getCiphertextBlob() == null) ? 0 : getCiphertextBlob().hashCode());
hashCode = prime * hashCode + ((getSourceKeyId() == null) ? 0 : getSourceKeyId().hashCode());
hashCode = prime * hashCode + ((getKeyId() == null) ? 0 : getKeyId().hashCode());
hashCode = prime * hashCode + ((getSourceEncryptionAlgorithm() == null) ? 0 : getSourceEncryptionAlgorithm().hashCode());
hashCode = prime * hashCode + ((getDestinationEncryptionAlgorithm() == null) ? 0 : getDestinationEncryptionAlgorithm().hashCode());
return hashCode;
}
@Override
public ReEncryptResult clone() {
try {
return (ReEncryptResult) super.clone();
} catch (CloneNotSupportedException e) {
throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e);
}
}
}