All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.lookoutequipment.model.CreateRetrainingSchedulerRequest Maven / Gradle / Ivy

/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.lookoutequipment.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreateRetrainingSchedulerRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* The name of the model to add the retraining scheduler to. *

*/ private String modelName; /** *

* The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest * UTC day. *

*/ private java.util.Date retrainingStartDate; /** *

* This parameter uses the ISO 8601 standard to set * the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other * parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 * year (P1Y). For example, the following values are valid: *

*
    *
  • *

    * P3M15D – Every 3 months and 15 days *

    *
  • *
  • *

    * P2M – Every 2 months *

    *
  • *
  • *

    * P150D – Every 150 days *

    *
  • *
*/ private String retrainingFrequency; /** *

* The number of past days of data that will be used for retraining. *

*/ private String lookbackWindow; /** *

* Indicates how the service will use new models. In MANAGED mode, new models will automatically be * used for inference if they have better performance than the current model. In MANUAL mode, the new * models will not be used until * they are manually activated. *

*/ private String promoteMode; /** *

* A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *

*/ private String clientToken; /** *

* The name of the model to add the retraining scheduler to. *

* * @param modelName * The name of the model to add the retraining scheduler to. */ public void setModelName(String modelName) { this.modelName = modelName; } /** *

* The name of the model to add the retraining scheduler to. *

* * @return The name of the model to add the retraining scheduler to. */ public String getModelName() { return this.modelName; } /** *

* The name of the model to add the retraining scheduler to. *

* * @param modelName * The name of the model to add the retraining scheduler to. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateRetrainingSchedulerRequest withModelName(String modelName) { setModelName(modelName); return this; } /** *

* The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest * UTC day. *

* * @param retrainingStartDate * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the * nearest UTC day. */ public void setRetrainingStartDate(java.util.Date retrainingStartDate) { this.retrainingStartDate = retrainingStartDate; } /** *

* The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest * UTC day. *

* * @return The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the * nearest UTC day. */ public java.util.Date getRetrainingStartDate() { return this.retrainingStartDate; } /** *

* The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest * UTC day. *

* * @param retrainingStartDate * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the * nearest UTC day. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateRetrainingSchedulerRequest withRetrainingStartDate(java.util.Date retrainingStartDate) { setRetrainingStartDate(retrainingStartDate); return this; } /** *

* This parameter uses the ISO 8601 standard to set * the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other * parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 * year (P1Y). For example, the following values are valid: *

*
    *
  • *

    * P3M15D – Every 3 months and 15 days *

    *
  • *
  • *

    * P2M – Every 2 months *

    *
  • *
  • *

    * P150D – Every 150 days *

    *
  • *
* * @param retrainingFrequency * This parameter uses the ISO 8601 standard * to set the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: * other parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the * maximum value is 1 year (P1Y). For example, the following values are valid:

*
    *
  • *

    * P3M15D – Every 3 months and 15 days *

    *
  • *
  • *

    * P2M – Every 2 months *

    *
  • *
  • *

    * P150D – Every 150 days *

    *
  • */ public void setRetrainingFrequency(String retrainingFrequency) { this.retrainingFrequency = retrainingFrequency; } /** *

    * This parameter uses the ISO 8601 standard to set * the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other * parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 * year (P1Y). For example, the following values are valid: *

    *
      *
    • *

      * P3M15D – Every 3 months and 15 days *

      *
    • *
    • *

      * P2M – Every 2 months *

      *
    • *
    • *

      * P150D – Every 150 days *

      *
    • *
    * * @return This parameter uses the ISO 8601 standard * to set the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: * other parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the * maximum value is 1 year (P1Y). For example, the following values are valid:

    *
      *
    • *

      * P3M15D – Every 3 months and 15 days *

      *
    • *
    • *

      * P2M – Every 2 months *

      *
    • *
    • *

      * P150D – Every 150 days *

      *
    • */ public String getRetrainingFrequency() { return this.retrainingFrequency; } /** *

      * This parameter uses the ISO 8601 standard to set * the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other * parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 * year (P1Y). For example, the following values are valid: *

      *
        *
      • *

        * P3M15D – Every 3 months and 15 days *

        *
      • *
      • *

        * P2M – Every 2 months *

        *
      • *
      • *

        * P150D – Every 150 days *

        *
      • *
      * * @param retrainingFrequency * This parameter uses the ISO 8601 standard * to set the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: * other parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the * maximum value is 1 year (P1Y). For example, the following values are valid:

      *
        *
      • *

        * P3M15D – Every 3 months and 15 days *

        *
      • *
      • *

        * P2M – Every 2 months *

        *
      • *
      • *

        * P150D – Every 150 days *

        *
      • * @return Returns a reference to this object so that method calls can be chained together. */ public CreateRetrainingSchedulerRequest withRetrainingFrequency(String retrainingFrequency) { setRetrainingFrequency(retrainingFrequency); return this; } /** *

        * The number of past days of data that will be used for retraining. *

        * * @param lookbackWindow * The number of past days of data that will be used for retraining. */ public void setLookbackWindow(String lookbackWindow) { this.lookbackWindow = lookbackWindow; } /** *

        * The number of past days of data that will be used for retraining. *

        * * @return The number of past days of data that will be used for retraining. */ public String getLookbackWindow() { return this.lookbackWindow; } /** *

        * The number of past days of data that will be used for retraining. *

        * * @param lookbackWindow * The number of past days of data that will be used for retraining. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateRetrainingSchedulerRequest withLookbackWindow(String lookbackWindow) { setLookbackWindow(lookbackWindow); return this; } /** *

        * Indicates how the service will use new models. In MANAGED mode, new models will automatically be * used for inference if they have better performance than the current model. In MANUAL mode, the new * models will not be used until * they are manually activated. *

        * * @param promoteMode * Indicates how the service will use new models. In MANAGED mode, new models will automatically * be used for inference if they have better performance than the current model. In MANUAL mode, * the new models will not be used until * they are manually activated. * @see ModelPromoteMode */ public void setPromoteMode(String promoteMode) { this.promoteMode = promoteMode; } /** *

        * Indicates how the service will use new models. In MANAGED mode, new models will automatically be * used for inference if they have better performance than the current model. In MANUAL mode, the new * models will not be used until * they are manually activated. *

        * * @return Indicates how the service will use new models. In MANAGED mode, new models will * automatically be used for inference if they have better performance than the current model. In * MANUAL mode, the new models will not be used until they are manually activated. * @see ModelPromoteMode */ public String getPromoteMode() { return this.promoteMode; } /** *

        * Indicates how the service will use new models. In MANAGED mode, new models will automatically be * used for inference if they have better performance than the current model. In MANUAL mode, the new * models will not be used until * they are manually activated. *

        * * @param promoteMode * Indicates how the service will use new models. In MANAGED mode, new models will automatically * be used for inference if they have better performance than the current model. In MANUAL mode, * the new models will not be used until * they are manually activated. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelPromoteMode */ public CreateRetrainingSchedulerRequest withPromoteMode(String promoteMode) { setPromoteMode(promoteMode); return this; } /** *

        * Indicates how the service will use new models. In MANAGED mode, new models will automatically be * used for inference if they have better performance than the current model. In MANUAL mode, the new * models will not be used until * they are manually activated. *

        * * @param promoteMode * Indicates how the service will use new models. In MANAGED mode, new models will automatically * be used for inference if they have better performance than the current model. In MANUAL mode, * the new models will not be used until * they are manually activated. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelPromoteMode */ public CreateRetrainingSchedulerRequest withPromoteMode(ModelPromoteMode promoteMode) { this.promoteMode = promoteMode.toString(); return this; } /** *

        * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *

        * * @param clientToken * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. */ public void setClientToken(String clientToken) { this.clientToken = clientToken; } /** *

        * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *

        * * @return A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. */ public String getClientToken() { return this.clientToken; } /** *

        * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment * generates one. *

        * * @param clientToken * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for * Equipment generates one. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateRetrainingSchedulerRequest withClientToken(String clientToken) { setClientToken(clientToken); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getModelName() != null) sb.append("ModelName: ").append(getModelName()).append(","); if (getRetrainingStartDate() != null) sb.append("RetrainingStartDate: ").append(getRetrainingStartDate()).append(","); if (getRetrainingFrequency() != null) sb.append("RetrainingFrequency: ").append(getRetrainingFrequency()).append(","); if (getLookbackWindow() != null) sb.append("LookbackWindow: ").append(getLookbackWindow()).append(","); if (getPromoteMode() != null) sb.append("PromoteMode: ").append(getPromoteMode()).append(","); if (getClientToken() != null) sb.append("ClientToken: ").append(getClientToken()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateRetrainingSchedulerRequest == false) return false; CreateRetrainingSchedulerRequest other = (CreateRetrainingSchedulerRequest) obj; if (other.getModelName() == null ^ this.getModelName() == null) return false; if (other.getModelName() != null && other.getModelName().equals(this.getModelName()) == false) return false; if (other.getRetrainingStartDate() == null ^ this.getRetrainingStartDate() == null) return false; if (other.getRetrainingStartDate() != null && other.getRetrainingStartDate().equals(this.getRetrainingStartDate()) == false) return false; if (other.getRetrainingFrequency() == null ^ this.getRetrainingFrequency() == null) return false; if (other.getRetrainingFrequency() != null && other.getRetrainingFrequency().equals(this.getRetrainingFrequency()) == false) return false; if (other.getLookbackWindow() == null ^ this.getLookbackWindow() == null) return false; if (other.getLookbackWindow() != null && other.getLookbackWindow().equals(this.getLookbackWindow()) == false) return false; if (other.getPromoteMode() == null ^ this.getPromoteMode() == null) return false; if (other.getPromoteMode() != null && other.getPromoteMode().equals(this.getPromoteMode()) == false) return false; if (other.getClientToken() == null ^ this.getClientToken() == null) return false; if (other.getClientToken() != null && other.getClientToken().equals(this.getClientToken()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getModelName() == null) ? 0 : getModelName().hashCode()); hashCode = prime * hashCode + ((getRetrainingStartDate() == null) ? 0 : getRetrainingStartDate().hashCode()); hashCode = prime * hashCode + ((getRetrainingFrequency() == null) ? 0 : getRetrainingFrequency().hashCode()); hashCode = prime * hashCode + ((getLookbackWindow() == null) ? 0 : getLookbackWindow().hashCode()); hashCode = prime * hashCode + ((getPromoteMode() == null) ? 0 : getPromoteMode().hashCode()); hashCode = prime * hashCode + ((getClientToken() == null) ? 0 : getClientToken().hashCode()); return hashCode; } @Override public CreateRetrainingSchedulerRequest clone() { return (CreateRetrainingSchedulerRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy