All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.lookoutequipment.model.ModelSummary Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Lookout for Equipment module holds the client classes that are used for communicating with Amazon Lookout for Equipment Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.lookoutequipment.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Provides information about the specified machine learning model, including dataset and model names and ARNs, as well * as status. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ModelSummary implements Serializable, Cloneable, StructuredPojo { /** *

* The name of the machine learning model. *

*/ private String modelName; /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

*/ private String modelArn; /** *

* The name of the dataset being used for the machine learning model. *

*/ private String datasetName; /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

*/ private String datasetArn; /** *

* Indicates the status of the machine learning model. *

*/ private String status; /** *

* The time at which the specific model was created. *

*/ private java.util.Date createdAt; /** *

* The model version that the inference scheduler uses to run an inference execution. *

*/ private Long activeModelVersion; /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

*/ private String activeModelVersionArn; /** *

* Indicates the status of the most recent scheduled retraining run. *

*/ private String latestScheduledRetrainingStatus; /** *

* Indicates the most recent model version that was generated by retraining. *

*/ private Long latestScheduledRetrainingModelVersion; /** *

* Indicates the start time of the most recent scheduled retraining run. *

*/ private java.util.Date latestScheduledRetrainingStartTime; /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

*/ private java.util.Date nextScheduledRetrainingStartDate; /** *

* Indicates the status of the retraining scheduler. *

*/ private String retrainingSchedulerStatus; private ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration; /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

*/ private String modelQuality; /** *

* The name of the machine learning model. *

* * @param modelName * The name of the machine learning model. */ public void setModelName(String modelName) { this.modelName = modelName; } /** *

* The name of the machine learning model. *

* * @return The name of the machine learning model. */ public String getModelName() { return this.modelName; } /** *

* The name of the machine learning model. *

* * @param modelName * The name of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelName(String modelName) { setModelName(modelName); return this; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @param modelArn * The Amazon Resource Name (ARN) of the machine learning model. */ public void setModelArn(String modelArn) { this.modelArn = modelArn; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @return The Amazon Resource Name (ARN) of the machine learning model. */ public String getModelArn() { return this.modelArn; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @param modelArn * The Amazon Resource Name (ARN) of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelArn(String modelArn) { setModelArn(modelArn); return this; } /** *

* The name of the dataset being used for the machine learning model. *

* * @param datasetName * The name of the dataset being used for the machine learning model. */ public void setDatasetName(String datasetName) { this.datasetName = datasetName; } /** *

* The name of the dataset being used for the machine learning model. *

* * @return The name of the dataset being used for the machine learning model. */ public String getDatasetName() { return this.datasetName; } /** *

* The name of the dataset being used for the machine learning model. *

* * @param datasetName * The name of the dataset being used for the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withDatasetName(String datasetName) { setDatasetName(datasetName); return this; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @param datasetArn * The Amazon Resource Name (ARN) of the dataset used to create the model. */ public void setDatasetArn(String datasetArn) { this.datasetArn = datasetArn; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @return The Amazon Resource Name (ARN) of the dataset used to create the model. */ public String getDatasetArn() { return this.datasetArn; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @param datasetArn * The Amazon Resource Name (ARN) of the dataset used to create the model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withDatasetArn(String datasetArn) { setDatasetArn(datasetArn); return this; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @see ModelStatus */ public void setStatus(String status) { this.status = status; } /** *

* Indicates the status of the machine learning model. *

* * @return Indicates the status of the machine learning model. * @see ModelStatus */ public String getStatus() { return this.status; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelStatus */ public ModelSummary withStatus(String status) { setStatus(status); return this; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelStatus */ public ModelSummary withStatus(ModelStatus status) { this.status = status.toString(); return this; } /** *

* The time at which the specific model was created. *

* * @param createdAt * The time at which the specific model was created. */ public void setCreatedAt(java.util.Date createdAt) { this.createdAt = createdAt; } /** *

* The time at which the specific model was created. *

* * @return The time at which the specific model was created. */ public java.util.Date getCreatedAt() { return this.createdAt; } /** *

* The time at which the specific model was created. *

* * @param createdAt * The time at which the specific model was created. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withCreatedAt(java.util.Date createdAt) { setCreatedAt(createdAt); return this; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersion * The model version that the inference scheduler uses to run an inference execution. */ public void setActiveModelVersion(Long activeModelVersion) { this.activeModelVersion = activeModelVersion; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @return The model version that the inference scheduler uses to run an inference execution. */ public Long getActiveModelVersion() { return this.activeModelVersion; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersion * The model version that the inference scheduler uses to run an inference execution. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withActiveModelVersion(Long activeModelVersion) { setActiveModelVersion(activeModelVersion); return this; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersionArn * The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the * model version that the inference scheduler uses to run an inference execution. */ public void setActiveModelVersionArn(String activeModelVersionArn) { this.activeModelVersionArn = activeModelVersionArn; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @return The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is * the model version that the inference scheduler uses to run an inference execution. */ public String getActiveModelVersionArn() { return this.activeModelVersionArn; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersionArn * The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the * model version that the inference scheduler uses to run an inference execution. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withActiveModelVersionArn(String activeModelVersionArn) { setActiveModelVersionArn(activeModelVersionArn); return this; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @see ModelVersionStatus */ public void setLatestScheduledRetrainingStatus(String latestScheduledRetrainingStatus) { this.latestScheduledRetrainingStatus = latestScheduledRetrainingStatus; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @return Indicates the status of the most recent scheduled retraining run. * @see ModelVersionStatus */ public String getLatestScheduledRetrainingStatus() { return this.latestScheduledRetrainingStatus; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelVersionStatus */ public ModelSummary withLatestScheduledRetrainingStatus(String latestScheduledRetrainingStatus) { setLatestScheduledRetrainingStatus(latestScheduledRetrainingStatus); return this; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelVersionStatus */ public ModelSummary withLatestScheduledRetrainingStatus(ModelVersionStatus latestScheduledRetrainingStatus) { this.latestScheduledRetrainingStatus = latestScheduledRetrainingStatus.toString(); return this; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @param latestScheduledRetrainingModelVersion * Indicates the most recent model version that was generated by retraining. */ public void setLatestScheduledRetrainingModelVersion(Long latestScheduledRetrainingModelVersion) { this.latestScheduledRetrainingModelVersion = latestScheduledRetrainingModelVersion; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @return Indicates the most recent model version that was generated by retraining. */ public Long getLatestScheduledRetrainingModelVersion() { return this.latestScheduledRetrainingModelVersion; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @param latestScheduledRetrainingModelVersion * Indicates the most recent model version that was generated by retraining. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withLatestScheduledRetrainingModelVersion(Long latestScheduledRetrainingModelVersion) { setLatestScheduledRetrainingModelVersion(latestScheduledRetrainingModelVersion); return this; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStartTime * Indicates the start time of the most recent scheduled retraining run. */ public void setLatestScheduledRetrainingStartTime(java.util.Date latestScheduledRetrainingStartTime) { this.latestScheduledRetrainingStartTime = latestScheduledRetrainingStartTime; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @return Indicates the start time of the most recent scheduled retraining run. */ public java.util.Date getLatestScheduledRetrainingStartTime() { return this.latestScheduledRetrainingStartTime; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStartTime * Indicates the start time of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withLatestScheduledRetrainingStartTime(java.util.Date latestScheduledRetrainingStartTime) { setLatestScheduledRetrainingStartTime(latestScheduledRetrainingStartTime); return this; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @param nextScheduledRetrainingStartDate * Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. */ public void setNextScheduledRetrainingStartDate(java.util.Date nextScheduledRetrainingStartDate) { this.nextScheduledRetrainingStartDate = nextScheduledRetrainingStartDate; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @return Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. */ public java.util.Date getNextScheduledRetrainingStartDate() { return this.nextScheduledRetrainingStartDate; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @param nextScheduledRetrainingStartDate * Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withNextScheduledRetrainingStartDate(java.util.Date nextScheduledRetrainingStartDate) { setNextScheduledRetrainingStartDate(nextScheduledRetrainingStartDate); return this; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @see RetrainingSchedulerStatus */ public void setRetrainingSchedulerStatus(String retrainingSchedulerStatus) { this.retrainingSchedulerStatus = retrainingSchedulerStatus; } /** *

* Indicates the status of the retraining scheduler. *

* * @return Indicates the status of the retraining scheduler. * @see RetrainingSchedulerStatus */ public String getRetrainingSchedulerStatus() { return this.retrainingSchedulerStatus; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @return Returns a reference to this object so that method calls can be chained together. * @see RetrainingSchedulerStatus */ public ModelSummary withRetrainingSchedulerStatus(String retrainingSchedulerStatus) { setRetrainingSchedulerStatus(retrainingSchedulerStatus); return this; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @return Returns a reference to this object so that method calls can be chained together. * @see RetrainingSchedulerStatus */ public ModelSummary withRetrainingSchedulerStatus(RetrainingSchedulerStatus retrainingSchedulerStatus) { this.retrainingSchedulerStatus = retrainingSchedulerStatus.toString(); return this; } /** * @param modelDiagnosticsOutputConfiguration */ public void setModelDiagnosticsOutputConfiguration(ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration) { this.modelDiagnosticsOutputConfiguration = modelDiagnosticsOutputConfiguration; } /** * @return */ public ModelDiagnosticsOutputConfiguration getModelDiagnosticsOutputConfiguration() { return this.modelDiagnosticsOutputConfiguration; } /** * @param modelDiagnosticsOutputConfiguration * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelDiagnosticsOutputConfiguration(ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration) { setModelDiagnosticsOutputConfiguration(modelDiagnosticsOutputConfiguration); return this; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @see ModelQuality */ public void setModelQuality(String modelQuality) { this.modelQuality = modelQuality; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @return Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices * with Amazon Lookout for Equipment. * @see ModelQuality */ public String getModelQuality() { return this.modelQuality; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelQuality */ public ModelSummary withModelQuality(String modelQuality) { setModelQuality(modelQuality); return this; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelQuality */ public ModelSummary withModelQuality(ModelQuality modelQuality) { this.modelQuality = modelQuality.toString(); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getModelName() != null) sb.append("ModelName: ").append(getModelName()).append(","); if (getModelArn() != null) sb.append("ModelArn: ").append(getModelArn()).append(","); if (getDatasetName() != null) sb.append("DatasetName: ").append(getDatasetName()).append(","); if (getDatasetArn() != null) sb.append("DatasetArn: ").append(getDatasetArn()).append(","); if (getStatus() != null) sb.append("Status: ").append(getStatus()).append(","); if (getCreatedAt() != null) sb.append("CreatedAt: ").append(getCreatedAt()).append(","); if (getActiveModelVersion() != null) sb.append("ActiveModelVersion: ").append(getActiveModelVersion()).append(","); if (getActiveModelVersionArn() != null) sb.append("ActiveModelVersionArn: ").append(getActiveModelVersionArn()).append(","); if (getLatestScheduledRetrainingStatus() != null) sb.append("LatestScheduledRetrainingStatus: ").append(getLatestScheduledRetrainingStatus()).append(","); if (getLatestScheduledRetrainingModelVersion() != null) sb.append("LatestScheduledRetrainingModelVersion: ").append(getLatestScheduledRetrainingModelVersion()).append(","); if (getLatestScheduledRetrainingStartTime() != null) sb.append("LatestScheduledRetrainingStartTime: ").append(getLatestScheduledRetrainingStartTime()).append(","); if (getNextScheduledRetrainingStartDate() != null) sb.append("NextScheduledRetrainingStartDate: ").append(getNextScheduledRetrainingStartDate()).append(","); if (getRetrainingSchedulerStatus() != null) sb.append("RetrainingSchedulerStatus: ").append(getRetrainingSchedulerStatus()).append(","); if (getModelDiagnosticsOutputConfiguration() != null) sb.append("ModelDiagnosticsOutputConfiguration: ").append(getModelDiagnosticsOutputConfiguration()).append(","); if (getModelQuality() != null) sb.append("ModelQuality: ").append(getModelQuality()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof ModelSummary == false) return false; ModelSummary other = (ModelSummary) obj; if (other.getModelName() == null ^ this.getModelName() == null) return false; if (other.getModelName() != null && other.getModelName().equals(this.getModelName()) == false) return false; if (other.getModelArn() == null ^ this.getModelArn() == null) return false; if (other.getModelArn() != null && other.getModelArn().equals(this.getModelArn()) == false) return false; if (other.getDatasetName() == null ^ this.getDatasetName() == null) return false; if (other.getDatasetName() != null && other.getDatasetName().equals(this.getDatasetName()) == false) return false; if (other.getDatasetArn() == null ^ this.getDatasetArn() == null) return false; if (other.getDatasetArn() != null && other.getDatasetArn().equals(this.getDatasetArn()) == false) return false; if (other.getStatus() == null ^ this.getStatus() == null) return false; if (other.getStatus() != null && other.getStatus().equals(this.getStatus()) == false) return false; if (other.getCreatedAt() == null ^ this.getCreatedAt() == null) return false; if (other.getCreatedAt() != null && other.getCreatedAt().equals(this.getCreatedAt()) == false) return false; if (other.getActiveModelVersion() == null ^ this.getActiveModelVersion() == null) return false; if (other.getActiveModelVersion() != null && other.getActiveModelVersion().equals(this.getActiveModelVersion()) == false) return false; if (other.getActiveModelVersionArn() == null ^ this.getActiveModelVersionArn() == null) return false; if (other.getActiveModelVersionArn() != null && other.getActiveModelVersionArn().equals(this.getActiveModelVersionArn()) == false) return false; if (other.getLatestScheduledRetrainingStatus() == null ^ this.getLatestScheduledRetrainingStatus() == null) return false; if (other.getLatestScheduledRetrainingStatus() != null && other.getLatestScheduledRetrainingStatus().equals(this.getLatestScheduledRetrainingStatus()) == false) return false; if (other.getLatestScheduledRetrainingModelVersion() == null ^ this.getLatestScheduledRetrainingModelVersion() == null) return false; if (other.getLatestScheduledRetrainingModelVersion() != null && other.getLatestScheduledRetrainingModelVersion().equals(this.getLatestScheduledRetrainingModelVersion()) == false) return false; if (other.getLatestScheduledRetrainingStartTime() == null ^ this.getLatestScheduledRetrainingStartTime() == null) return false; if (other.getLatestScheduledRetrainingStartTime() != null && other.getLatestScheduledRetrainingStartTime().equals(this.getLatestScheduledRetrainingStartTime()) == false) return false; if (other.getNextScheduledRetrainingStartDate() == null ^ this.getNextScheduledRetrainingStartDate() == null) return false; if (other.getNextScheduledRetrainingStartDate() != null && other.getNextScheduledRetrainingStartDate().equals(this.getNextScheduledRetrainingStartDate()) == false) return false; if (other.getRetrainingSchedulerStatus() == null ^ this.getRetrainingSchedulerStatus() == null) return false; if (other.getRetrainingSchedulerStatus() != null && other.getRetrainingSchedulerStatus().equals(this.getRetrainingSchedulerStatus()) == false) return false; if (other.getModelDiagnosticsOutputConfiguration() == null ^ this.getModelDiagnosticsOutputConfiguration() == null) return false; if (other.getModelDiagnosticsOutputConfiguration() != null && other.getModelDiagnosticsOutputConfiguration().equals(this.getModelDiagnosticsOutputConfiguration()) == false) return false; if (other.getModelQuality() == null ^ this.getModelQuality() == null) return false; if (other.getModelQuality() != null && other.getModelQuality().equals(this.getModelQuality()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getModelName() == null) ? 0 : getModelName().hashCode()); hashCode = prime * hashCode + ((getModelArn() == null) ? 0 : getModelArn().hashCode()); hashCode = prime * hashCode + ((getDatasetName() == null) ? 0 : getDatasetName().hashCode()); hashCode = prime * hashCode + ((getDatasetArn() == null) ? 0 : getDatasetArn().hashCode()); hashCode = prime * hashCode + ((getStatus() == null) ? 0 : getStatus().hashCode()); hashCode = prime * hashCode + ((getCreatedAt() == null) ? 0 : getCreatedAt().hashCode()); hashCode = prime * hashCode + ((getActiveModelVersion() == null) ? 0 : getActiveModelVersion().hashCode()); hashCode = prime * hashCode + ((getActiveModelVersionArn() == null) ? 0 : getActiveModelVersionArn().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingStatus() == null) ? 0 : getLatestScheduledRetrainingStatus().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingModelVersion() == null) ? 0 : getLatestScheduledRetrainingModelVersion().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingStartTime() == null) ? 0 : getLatestScheduledRetrainingStartTime().hashCode()); hashCode = prime * hashCode + ((getNextScheduledRetrainingStartDate() == null) ? 0 : getNextScheduledRetrainingStartDate().hashCode()); hashCode = prime * hashCode + ((getRetrainingSchedulerStatus() == null) ? 0 : getRetrainingSchedulerStatus().hashCode()); hashCode = prime * hashCode + ((getModelDiagnosticsOutputConfiguration() == null) ? 0 : getModelDiagnosticsOutputConfiguration().hashCode()); hashCode = prime * hashCode + ((getModelQuality() == null) ? 0 : getModelQuality().hashCode()); return hashCode; } @Override public ModelSummary clone() { try { return (ModelSummary) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.lookoutequipment.model.transform.ModelSummaryMarshaller.getInstance().marshall(this, protocolMarshaller); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy