All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.lookoutequipment.model.ModelSummary Maven / Gradle / Ivy

/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.lookoutequipment.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Provides information about the specified machine learning model, including dataset and model names and ARNs, as well * as status. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ModelSummary implements Serializable, Cloneable, StructuredPojo { /** *

* The name of the machine learning model. *

*/ private String modelName; /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

*/ private String modelArn; /** *

* The name of the dataset being used for the machine learning model. *

*/ private String datasetName; /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

*/ private String datasetArn; /** *

* Indicates the status of the machine learning model. *

*/ private String status; /** *

* The time at which the specific model was created. *

*/ private java.util.Date createdAt; /** *

* The model version that the inference scheduler uses to run an inference execution. *

*/ private Long activeModelVersion; /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

*/ private String activeModelVersionArn; /** *

* Indicates the status of the most recent scheduled retraining run. *

*/ private String latestScheduledRetrainingStatus; /** *

* Indicates the most recent model version that was generated by retraining. *

*/ private Long latestScheduledRetrainingModelVersion; /** *

* Indicates the start time of the most recent scheduled retraining run. *

*/ private java.util.Date latestScheduledRetrainingStartTime; /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

*/ private java.util.Date nextScheduledRetrainingStartDate; /** *

* Indicates the status of the retraining scheduler. *

*/ private String retrainingSchedulerStatus; private ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration; /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

*/ private String modelQuality; /** *

* The name of the machine learning model. *

* * @param modelName * The name of the machine learning model. */ public void setModelName(String modelName) { this.modelName = modelName; } /** *

* The name of the machine learning model. *

* * @return The name of the machine learning model. */ public String getModelName() { return this.modelName; } /** *

* The name of the machine learning model. *

* * @param modelName * The name of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelName(String modelName) { setModelName(modelName); return this; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @param modelArn * The Amazon Resource Name (ARN) of the machine learning model. */ public void setModelArn(String modelArn) { this.modelArn = modelArn; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @return The Amazon Resource Name (ARN) of the machine learning model. */ public String getModelArn() { return this.modelArn; } /** *

* The Amazon Resource Name (ARN) of the machine learning model. *

* * @param modelArn * The Amazon Resource Name (ARN) of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelArn(String modelArn) { setModelArn(modelArn); return this; } /** *

* The name of the dataset being used for the machine learning model. *

* * @param datasetName * The name of the dataset being used for the machine learning model. */ public void setDatasetName(String datasetName) { this.datasetName = datasetName; } /** *

* The name of the dataset being used for the machine learning model. *

* * @return The name of the dataset being used for the machine learning model. */ public String getDatasetName() { return this.datasetName; } /** *

* The name of the dataset being used for the machine learning model. *

* * @param datasetName * The name of the dataset being used for the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withDatasetName(String datasetName) { setDatasetName(datasetName); return this; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @param datasetArn * The Amazon Resource Name (ARN) of the dataset used to create the model. */ public void setDatasetArn(String datasetArn) { this.datasetArn = datasetArn; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @return The Amazon Resource Name (ARN) of the dataset used to create the model. */ public String getDatasetArn() { return this.datasetArn; } /** *

* The Amazon Resource Name (ARN) of the dataset used to create the model. *

* * @param datasetArn * The Amazon Resource Name (ARN) of the dataset used to create the model. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withDatasetArn(String datasetArn) { setDatasetArn(datasetArn); return this; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @see ModelStatus */ public void setStatus(String status) { this.status = status; } /** *

* Indicates the status of the machine learning model. *

* * @return Indicates the status of the machine learning model. * @see ModelStatus */ public String getStatus() { return this.status; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelStatus */ public ModelSummary withStatus(String status) { setStatus(status); return this; } /** *

* Indicates the status of the machine learning model. *

* * @param status * Indicates the status of the machine learning model. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelStatus */ public ModelSummary withStatus(ModelStatus status) { this.status = status.toString(); return this; } /** *

* The time at which the specific model was created. *

* * @param createdAt * The time at which the specific model was created. */ public void setCreatedAt(java.util.Date createdAt) { this.createdAt = createdAt; } /** *

* The time at which the specific model was created. *

* * @return The time at which the specific model was created. */ public java.util.Date getCreatedAt() { return this.createdAt; } /** *

* The time at which the specific model was created. *

* * @param createdAt * The time at which the specific model was created. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withCreatedAt(java.util.Date createdAt) { setCreatedAt(createdAt); return this; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersion * The model version that the inference scheduler uses to run an inference execution. */ public void setActiveModelVersion(Long activeModelVersion) { this.activeModelVersion = activeModelVersion; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @return The model version that the inference scheduler uses to run an inference execution. */ public Long getActiveModelVersion() { return this.activeModelVersion; } /** *

* The model version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersion * The model version that the inference scheduler uses to run an inference execution. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withActiveModelVersion(Long activeModelVersion) { setActiveModelVersion(activeModelVersion); return this; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersionArn * The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the * model version that the inference scheduler uses to run an inference execution. */ public void setActiveModelVersionArn(String activeModelVersionArn) { this.activeModelVersionArn = activeModelVersionArn; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @return The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is * the model version that the inference scheduler uses to run an inference execution. */ public String getActiveModelVersionArn() { return this.activeModelVersionArn; } /** *

* The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model * version that the inference scheduler uses to run an inference execution. *

* * @param activeModelVersionArn * The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the * model version that the inference scheduler uses to run an inference execution. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withActiveModelVersionArn(String activeModelVersionArn) { setActiveModelVersionArn(activeModelVersionArn); return this; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @see ModelVersionStatus */ public void setLatestScheduledRetrainingStatus(String latestScheduledRetrainingStatus) { this.latestScheduledRetrainingStatus = latestScheduledRetrainingStatus; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @return Indicates the status of the most recent scheduled retraining run. * @see ModelVersionStatus */ public String getLatestScheduledRetrainingStatus() { return this.latestScheduledRetrainingStatus; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelVersionStatus */ public ModelSummary withLatestScheduledRetrainingStatus(String latestScheduledRetrainingStatus) { setLatestScheduledRetrainingStatus(latestScheduledRetrainingStatus); return this; } /** *

* Indicates the status of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStatus * Indicates the status of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelVersionStatus */ public ModelSummary withLatestScheduledRetrainingStatus(ModelVersionStatus latestScheduledRetrainingStatus) { this.latestScheduledRetrainingStatus = latestScheduledRetrainingStatus.toString(); return this; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @param latestScheduledRetrainingModelVersion * Indicates the most recent model version that was generated by retraining. */ public void setLatestScheduledRetrainingModelVersion(Long latestScheduledRetrainingModelVersion) { this.latestScheduledRetrainingModelVersion = latestScheduledRetrainingModelVersion; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @return Indicates the most recent model version that was generated by retraining. */ public Long getLatestScheduledRetrainingModelVersion() { return this.latestScheduledRetrainingModelVersion; } /** *

* Indicates the most recent model version that was generated by retraining. *

* * @param latestScheduledRetrainingModelVersion * Indicates the most recent model version that was generated by retraining. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withLatestScheduledRetrainingModelVersion(Long latestScheduledRetrainingModelVersion) { setLatestScheduledRetrainingModelVersion(latestScheduledRetrainingModelVersion); return this; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStartTime * Indicates the start time of the most recent scheduled retraining run. */ public void setLatestScheduledRetrainingStartTime(java.util.Date latestScheduledRetrainingStartTime) { this.latestScheduledRetrainingStartTime = latestScheduledRetrainingStartTime; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @return Indicates the start time of the most recent scheduled retraining run. */ public java.util.Date getLatestScheduledRetrainingStartTime() { return this.latestScheduledRetrainingStartTime; } /** *

* Indicates the start time of the most recent scheduled retraining run. *

* * @param latestScheduledRetrainingStartTime * Indicates the start time of the most recent scheduled retraining run. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withLatestScheduledRetrainingStartTime(java.util.Date latestScheduledRetrainingStartTime) { setLatestScheduledRetrainingStartTime(latestScheduledRetrainingStartTime); return this; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @param nextScheduledRetrainingStartDate * Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. */ public void setNextScheduledRetrainingStartDate(java.util.Date nextScheduledRetrainingStartDate) { this.nextScheduledRetrainingStartDate = nextScheduledRetrainingStartDate; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @return Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. */ public java.util.Date getNextScheduledRetrainingStartDate() { return this.nextScheduledRetrainingStartDate; } /** *

* Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time * you provide to the nearest UTC day. *

* * @param nextScheduledRetrainingStartDate * Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates * the time you provide to the nearest UTC day. * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withNextScheduledRetrainingStartDate(java.util.Date nextScheduledRetrainingStartDate) { setNextScheduledRetrainingStartDate(nextScheduledRetrainingStartDate); return this; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @see RetrainingSchedulerStatus */ public void setRetrainingSchedulerStatus(String retrainingSchedulerStatus) { this.retrainingSchedulerStatus = retrainingSchedulerStatus; } /** *

* Indicates the status of the retraining scheduler. *

* * @return Indicates the status of the retraining scheduler. * @see RetrainingSchedulerStatus */ public String getRetrainingSchedulerStatus() { return this.retrainingSchedulerStatus; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @return Returns a reference to this object so that method calls can be chained together. * @see RetrainingSchedulerStatus */ public ModelSummary withRetrainingSchedulerStatus(String retrainingSchedulerStatus) { setRetrainingSchedulerStatus(retrainingSchedulerStatus); return this; } /** *

* Indicates the status of the retraining scheduler. *

* * @param retrainingSchedulerStatus * Indicates the status of the retraining scheduler. * @return Returns a reference to this object so that method calls can be chained together. * @see RetrainingSchedulerStatus */ public ModelSummary withRetrainingSchedulerStatus(RetrainingSchedulerStatus retrainingSchedulerStatus) { this.retrainingSchedulerStatus = retrainingSchedulerStatus.toString(); return this; } /** * @param modelDiagnosticsOutputConfiguration */ public void setModelDiagnosticsOutputConfiguration(ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration) { this.modelDiagnosticsOutputConfiguration = modelDiagnosticsOutputConfiguration; } /** * @return */ public ModelDiagnosticsOutputConfiguration getModelDiagnosticsOutputConfiguration() { return this.modelDiagnosticsOutputConfiguration; } /** * @param modelDiagnosticsOutputConfiguration * @return Returns a reference to this object so that method calls can be chained together. */ public ModelSummary withModelDiagnosticsOutputConfiguration(ModelDiagnosticsOutputConfiguration modelDiagnosticsOutputConfiguration) { setModelDiagnosticsOutputConfiguration(modelDiagnosticsOutputConfiguration); return this; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @see ModelQuality */ public void setModelQuality(String modelQuality) { this.modelQuality = modelQuality; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @return Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices * with Amazon Lookout for Equipment. * @see ModelQuality */ public String getModelQuality() { return this.modelQuality; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelQuality */ public ModelSummary withModelQuality(String modelQuality) { setModelQuality(modelQuality); return this; } /** *

* Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the model * quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. Otherwise, the value * is QUALITY_THRESHOLD_MET. *

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality is * CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by adding labels * to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding * labeling. *

*

* For information about improving the quality of a model, see Best practices with Amazon * Lookout for Equipment. *

* * @param modelQuality * Provides a quality assessment for a model that uses labels. If Lookout for Equipment determines that the * model quality is poor based on training metrics, the value is POOR_QUALITY_DETECTED. * Otherwise, the value is QUALITY_THRESHOLD_MET.

*

* If the model is unlabeled, the model quality can't be assessed and the value of ModelQuality * is CANNOT_DETERMINE_QUALITY. In this situation, you can get a model quality assessment by * adding labels to the input dataset and retraining the model. *

*

* For information about using labels with your models, see Understanding labeling. *

*

* For information about improving the quality of a model, see Best practices with * Amazon Lookout for Equipment. * @return Returns a reference to this object so that method calls can be chained together. * @see ModelQuality */ public ModelSummary withModelQuality(ModelQuality modelQuality) { this.modelQuality = modelQuality.toString(); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getModelName() != null) sb.append("ModelName: ").append(getModelName()).append(","); if (getModelArn() != null) sb.append("ModelArn: ").append(getModelArn()).append(","); if (getDatasetName() != null) sb.append("DatasetName: ").append(getDatasetName()).append(","); if (getDatasetArn() != null) sb.append("DatasetArn: ").append(getDatasetArn()).append(","); if (getStatus() != null) sb.append("Status: ").append(getStatus()).append(","); if (getCreatedAt() != null) sb.append("CreatedAt: ").append(getCreatedAt()).append(","); if (getActiveModelVersion() != null) sb.append("ActiveModelVersion: ").append(getActiveModelVersion()).append(","); if (getActiveModelVersionArn() != null) sb.append("ActiveModelVersionArn: ").append(getActiveModelVersionArn()).append(","); if (getLatestScheduledRetrainingStatus() != null) sb.append("LatestScheduledRetrainingStatus: ").append(getLatestScheduledRetrainingStatus()).append(","); if (getLatestScheduledRetrainingModelVersion() != null) sb.append("LatestScheduledRetrainingModelVersion: ").append(getLatestScheduledRetrainingModelVersion()).append(","); if (getLatestScheduledRetrainingStartTime() != null) sb.append("LatestScheduledRetrainingStartTime: ").append(getLatestScheduledRetrainingStartTime()).append(","); if (getNextScheduledRetrainingStartDate() != null) sb.append("NextScheduledRetrainingStartDate: ").append(getNextScheduledRetrainingStartDate()).append(","); if (getRetrainingSchedulerStatus() != null) sb.append("RetrainingSchedulerStatus: ").append(getRetrainingSchedulerStatus()).append(","); if (getModelDiagnosticsOutputConfiguration() != null) sb.append("ModelDiagnosticsOutputConfiguration: ").append(getModelDiagnosticsOutputConfiguration()).append(","); if (getModelQuality() != null) sb.append("ModelQuality: ").append(getModelQuality()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof ModelSummary == false) return false; ModelSummary other = (ModelSummary) obj; if (other.getModelName() == null ^ this.getModelName() == null) return false; if (other.getModelName() != null && other.getModelName().equals(this.getModelName()) == false) return false; if (other.getModelArn() == null ^ this.getModelArn() == null) return false; if (other.getModelArn() != null && other.getModelArn().equals(this.getModelArn()) == false) return false; if (other.getDatasetName() == null ^ this.getDatasetName() == null) return false; if (other.getDatasetName() != null && other.getDatasetName().equals(this.getDatasetName()) == false) return false; if (other.getDatasetArn() == null ^ this.getDatasetArn() == null) return false; if (other.getDatasetArn() != null && other.getDatasetArn().equals(this.getDatasetArn()) == false) return false; if (other.getStatus() == null ^ this.getStatus() == null) return false; if (other.getStatus() != null && other.getStatus().equals(this.getStatus()) == false) return false; if (other.getCreatedAt() == null ^ this.getCreatedAt() == null) return false; if (other.getCreatedAt() != null && other.getCreatedAt().equals(this.getCreatedAt()) == false) return false; if (other.getActiveModelVersion() == null ^ this.getActiveModelVersion() == null) return false; if (other.getActiveModelVersion() != null && other.getActiveModelVersion().equals(this.getActiveModelVersion()) == false) return false; if (other.getActiveModelVersionArn() == null ^ this.getActiveModelVersionArn() == null) return false; if (other.getActiveModelVersionArn() != null && other.getActiveModelVersionArn().equals(this.getActiveModelVersionArn()) == false) return false; if (other.getLatestScheduledRetrainingStatus() == null ^ this.getLatestScheduledRetrainingStatus() == null) return false; if (other.getLatestScheduledRetrainingStatus() != null && other.getLatestScheduledRetrainingStatus().equals(this.getLatestScheduledRetrainingStatus()) == false) return false; if (other.getLatestScheduledRetrainingModelVersion() == null ^ this.getLatestScheduledRetrainingModelVersion() == null) return false; if (other.getLatestScheduledRetrainingModelVersion() != null && other.getLatestScheduledRetrainingModelVersion().equals(this.getLatestScheduledRetrainingModelVersion()) == false) return false; if (other.getLatestScheduledRetrainingStartTime() == null ^ this.getLatestScheduledRetrainingStartTime() == null) return false; if (other.getLatestScheduledRetrainingStartTime() != null && other.getLatestScheduledRetrainingStartTime().equals(this.getLatestScheduledRetrainingStartTime()) == false) return false; if (other.getNextScheduledRetrainingStartDate() == null ^ this.getNextScheduledRetrainingStartDate() == null) return false; if (other.getNextScheduledRetrainingStartDate() != null && other.getNextScheduledRetrainingStartDate().equals(this.getNextScheduledRetrainingStartDate()) == false) return false; if (other.getRetrainingSchedulerStatus() == null ^ this.getRetrainingSchedulerStatus() == null) return false; if (other.getRetrainingSchedulerStatus() != null && other.getRetrainingSchedulerStatus().equals(this.getRetrainingSchedulerStatus()) == false) return false; if (other.getModelDiagnosticsOutputConfiguration() == null ^ this.getModelDiagnosticsOutputConfiguration() == null) return false; if (other.getModelDiagnosticsOutputConfiguration() != null && other.getModelDiagnosticsOutputConfiguration().equals(this.getModelDiagnosticsOutputConfiguration()) == false) return false; if (other.getModelQuality() == null ^ this.getModelQuality() == null) return false; if (other.getModelQuality() != null && other.getModelQuality().equals(this.getModelQuality()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getModelName() == null) ? 0 : getModelName().hashCode()); hashCode = prime * hashCode + ((getModelArn() == null) ? 0 : getModelArn().hashCode()); hashCode = prime * hashCode + ((getDatasetName() == null) ? 0 : getDatasetName().hashCode()); hashCode = prime * hashCode + ((getDatasetArn() == null) ? 0 : getDatasetArn().hashCode()); hashCode = prime * hashCode + ((getStatus() == null) ? 0 : getStatus().hashCode()); hashCode = prime * hashCode + ((getCreatedAt() == null) ? 0 : getCreatedAt().hashCode()); hashCode = prime * hashCode + ((getActiveModelVersion() == null) ? 0 : getActiveModelVersion().hashCode()); hashCode = prime * hashCode + ((getActiveModelVersionArn() == null) ? 0 : getActiveModelVersionArn().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingStatus() == null) ? 0 : getLatestScheduledRetrainingStatus().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingModelVersion() == null) ? 0 : getLatestScheduledRetrainingModelVersion().hashCode()); hashCode = prime * hashCode + ((getLatestScheduledRetrainingStartTime() == null) ? 0 : getLatestScheduledRetrainingStartTime().hashCode()); hashCode = prime * hashCode + ((getNextScheduledRetrainingStartDate() == null) ? 0 : getNextScheduledRetrainingStartDate().hashCode()); hashCode = prime * hashCode + ((getRetrainingSchedulerStatus() == null) ? 0 : getRetrainingSchedulerStatus().hashCode()); hashCode = prime * hashCode + ((getModelDiagnosticsOutputConfiguration() == null) ? 0 : getModelDiagnosticsOutputConfiguration().hashCode()); hashCode = prime * hashCode + ((getModelQuality() == null) ? 0 : getModelQuality().hashCode()); return hashCode; } @Override public ModelSummary clone() { try { return (ModelSummary) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.lookoutequipment.model.transform.ModelSummaryMarshaller.getInstance().marshall(this, protocolMarshaller); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy