All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.lookoutforvision.model.DatasetImageStats Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Lookout for Vision module holds the client classes that are used for communicating with Amazon Lookout for Vision Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.lookoutforvision.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Statistics about the images in a dataset. *

* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class DatasetImageStats implements Serializable, Cloneable, StructuredPojo { /** *

* The total number of images in the dataset. *

*/ private Integer total; /** *

* The total number of labeled images. *

*/ private Integer labeled; /** *

* The total number of images labeled as normal. *

*/ private Integer normal; /** *

* the total number of images labeled as an anomaly. *

*/ private Integer anomaly; /** *

* The total number of images in the dataset. *

* * @param total * The total number of images in the dataset. */ public void setTotal(Integer total) { this.total = total; } /** *

* The total number of images in the dataset. *

* * @return The total number of images in the dataset. */ public Integer getTotal() { return this.total; } /** *

* The total number of images in the dataset. *

* * @param total * The total number of images in the dataset. * @return Returns a reference to this object so that method calls can be chained together. */ public DatasetImageStats withTotal(Integer total) { setTotal(total); return this; } /** *

* The total number of labeled images. *

* * @param labeled * The total number of labeled images. */ public void setLabeled(Integer labeled) { this.labeled = labeled; } /** *

* The total number of labeled images. *

* * @return The total number of labeled images. */ public Integer getLabeled() { return this.labeled; } /** *

* The total number of labeled images. *

* * @param labeled * The total number of labeled images. * @return Returns a reference to this object so that method calls can be chained together. */ public DatasetImageStats withLabeled(Integer labeled) { setLabeled(labeled); return this; } /** *

* The total number of images labeled as normal. *

* * @param normal * The total number of images labeled as normal. */ public void setNormal(Integer normal) { this.normal = normal; } /** *

* The total number of images labeled as normal. *

* * @return The total number of images labeled as normal. */ public Integer getNormal() { return this.normal; } /** *

* The total number of images labeled as normal. *

* * @param normal * The total number of images labeled as normal. * @return Returns a reference to this object so that method calls can be chained together. */ public DatasetImageStats withNormal(Integer normal) { setNormal(normal); return this; } /** *

* the total number of images labeled as an anomaly. *

* * @param anomaly * the total number of images labeled as an anomaly. */ public void setAnomaly(Integer anomaly) { this.anomaly = anomaly; } /** *

* the total number of images labeled as an anomaly. *

* * @return the total number of images labeled as an anomaly. */ public Integer getAnomaly() { return this.anomaly; } /** *

* the total number of images labeled as an anomaly. *

* * @param anomaly * the total number of images labeled as an anomaly. * @return Returns a reference to this object so that method calls can be chained together. */ public DatasetImageStats withAnomaly(Integer anomaly) { setAnomaly(anomaly); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getTotal() != null) sb.append("Total: ").append(getTotal()).append(","); if (getLabeled() != null) sb.append("Labeled: ").append(getLabeled()).append(","); if (getNormal() != null) sb.append("Normal: ").append(getNormal()).append(","); if (getAnomaly() != null) sb.append("Anomaly: ").append(getAnomaly()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof DatasetImageStats == false) return false; DatasetImageStats other = (DatasetImageStats) obj; if (other.getTotal() == null ^ this.getTotal() == null) return false; if (other.getTotal() != null && other.getTotal().equals(this.getTotal()) == false) return false; if (other.getLabeled() == null ^ this.getLabeled() == null) return false; if (other.getLabeled() != null && other.getLabeled().equals(this.getLabeled()) == false) return false; if (other.getNormal() == null ^ this.getNormal() == null) return false; if (other.getNormal() != null && other.getNormal().equals(this.getNormal()) == false) return false; if (other.getAnomaly() == null ^ this.getAnomaly() == null) return false; if (other.getAnomaly() != null && other.getAnomaly().equals(this.getAnomaly()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getTotal() == null) ? 0 : getTotal().hashCode()); hashCode = prime * hashCode + ((getLabeled() == null) ? 0 : getLabeled().hashCode()); hashCode = prime * hashCode + ((getNormal() == null) ? 0 : getNormal().hashCode()); hashCode = prime * hashCode + ((getAnomaly() == null) ? 0 : getAnomaly().hashCode()); return hashCode; } @Override public DatasetImageStats clone() { try { return (DatasetImageStats) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.lookoutforvision.model.transform.DatasetImageStatsMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy