All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.MLModel Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Machine Learning module holds the client classes that is used for communicating with Amazon Machine Learning Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2011-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;

/**
 * 

* Represents the output of a GetMLModel operation. *

*

* The content consists of the detailed metadata and the current status of the MLModel. *

*/ public class MLModel implements Serializable, Cloneable { /** *

* The ID assigned to the MLModel at creation. *

*/ private String mLModelId; /** *

* The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

*/ private String trainingDataSourceId; /** *

* The AWS user account from which the MLModel was created. The account type can be either an AWS root * account or an AWS Identity and Access Management (IAM) user account. *

*/ private String createdByIamUser; /** *

* The time that the MLModel was created. The time is expressed in epoch time. *

*/ private java.util.Date createdAt; /** *

* The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

*/ private java.util.Date lastUpdatedAt; /** *

* A user-supplied name or description of the MLModel. *

*/ private String name; /** *

* The current status of an MLModel. This element can have one of the following values: *

*
    *
  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
  • *
  • INPROGRESS - The creation process is underway.
  • *
  • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
  • *
  • COMPLETED - The creation process completed successfully.
  • *
  • DELETED - The MLModel is marked as deleted. It isn't usable.
  • *
*/ private String status; private Long sizeInBytes; /** *

* The current endpoint of the MLModel. *

*/ private RealtimeEndpointInfo endpointInfo; /** *

* A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the * data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

    *
  • *
*/ private com.amazonaws.internal.SdkInternalMap trainingParameters; /** *

* The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

*/ private String inputDataLocationS3; /** *

* The algorithm used to train the MLModel. The following algorithm is supported: *

*
    *
  • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
  • *
*/ private String algorithm; /** *

* Identifies the MLModel category. The following are the available types: *

*
    *
  • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
  • *
  • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
  • *
  • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
  • *
*/ private String mLModelType; private Float scoreThreshold; /** *

* The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

*/ private java.util.Date scoreThresholdLastUpdatedAt; /** *

* A description of the most recent details about accessing the MLModel. *

*/ private String message; private Long computeTime; private java.util.Date finishedAt; private java.util.Date startedAt; /** *

* The ID assigned to the MLModel at creation. *

* * @param mLModelId * The ID assigned to the MLModel at creation. */ public void setMLModelId(String mLModelId) { this.mLModelId = mLModelId; } /** *

* The ID assigned to the MLModel at creation. *

* * @return The ID assigned to the MLModel at creation. */ public String getMLModelId() { return this.mLModelId; } /** *

* The ID assigned to the MLModel at creation. *

* * @param mLModelId * The ID assigned to the MLModel at creation. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withMLModelId(String mLModelId) { setMLModelId(mLModelId); return this; } /** *

* The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

* * @param trainingDataSourceId * The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. */ public void setTrainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; } /** *

* The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

* * @return The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. */ public String getTrainingDataSourceId() { return this.trainingDataSourceId; } /** *

* The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

* * @param trainingDataSourceId * The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withTrainingDataSourceId(String trainingDataSourceId) { setTrainingDataSourceId(trainingDataSourceId); return this; } /** *

* The AWS user account from which the MLModel was created. The account type can be either an AWS root * account or an AWS Identity and Access Management (IAM) user account. *

* * @param createdByIamUser * The AWS user account from which the MLModel was created. The account type can be either an * AWS root account or an AWS Identity and Access Management (IAM) user account. */ public void setCreatedByIamUser(String createdByIamUser) { this.createdByIamUser = createdByIamUser; } /** *

* The AWS user account from which the MLModel was created. The account type can be either an AWS root * account or an AWS Identity and Access Management (IAM) user account. *

* * @return The AWS user account from which the MLModel was created. The account type can be either an * AWS root account or an AWS Identity and Access Management (IAM) user account. */ public String getCreatedByIamUser() { return this.createdByIamUser; } /** *

* The AWS user account from which the MLModel was created. The account type can be either an AWS root * account or an AWS Identity and Access Management (IAM) user account. *

* * @param createdByIamUser * The AWS user account from which the MLModel was created. The account type can be either an * AWS root account or an AWS Identity and Access Management (IAM) user account. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withCreatedByIamUser(String createdByIamUser) { setCreatedByIamUser(createdByIamUser); return this; } /** *

* The time that the MLModel was created. The time is expressed in epoch time. *

* * @param createdAt * The time that the MLModel was created. The time is expressed in epoch time. */ public void setCreatedAt(java.util.Date createdAt) { this.createdAt = createdAt; } /** *

* The time that the MLModel was created. The time is expressed in epoch time. *

* * @return The time that the MLModel was created. The time is expressed in epoch time. */ public java.util.Date getCreatedAt() { return this.createdAt; } /** *

* The time that the MLModel was created. The time is expressed in epoch time. *

* * @param createdAt * The time that the MLModel was created. The time is expressed in epoch time. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withCreatedAt(java.util.Date createdAt) { setCreatedAt(createdAt); return this; } /** *

* The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

* * @param lastUpdatedAt * The time of the most recent edit to the MLModel. The time is expressed in epoch time. */ public void setLastUpdatedAt(java.util.Date lastUpdatedAt) { this.lastUpdatedAt = lastUpdatedAt; } /** *

* The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

* * @return The time of the most recent edit to the MLModel. The time is expressed in epoch time. */ public java.util.Date getLastUpdatedAt() { return this.lastUpdatedAt; } /** *

* The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

* * @param lastUpdatedAt * The time of the most recent edit to the MLModel. The time is expressed in epoch time. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withLastUpdatedAt(java.util.Date lastUpdatedAt) { setLastUpdatedAt(lastUpdatedAt); return this; } /** *

* A user-supplied name or description of the MLModel. *

* * @param name * A user-supplied name or description of the MLModel. */ public void setName(String name) { this.name = name; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String getName() { return this.name; } /** *

* A user-supplied name or description of the MLModel. *

* * @param name * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withName(String name) { setName(name); return this; } /** *

* The current status of an MLModel. This element can have one of the following values: *

*
    *
  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
  • *
  • INPROGRESS - The creation process is underway.
  • *
  • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
  • *
  • COMPLETED - The creation process completed successfully.
  • *
  • DELETED - The MLModel is marked as deleted. It isn't usable.
  • *
* * @param status * The current status of an MLModel. This element can have one of the following values:

*
    *
  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
  • *
  • INPROGRESS - The creation process is underway.
  • *
  • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
  • *
  • COMPLETED - The creation process completed successfully.
  • *
  • DELETED - The MLModel is marked as deleted. It isn't usable.
  • * @see EntityStatus */ public void setStatus(String status) { this.status = status; } /** *

    * The current status of an MLModel. This element can have one of the following values: *

    *
      *
    • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
    • *
    • INPROGRESS - The creation process is underway.
    • *
    • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
    • *
    • COMPLETED - The creation process completed successfully.
    • *
    • DELETED - The MLModel is marked as deleted. It isn't usable.
    • *
    * * @return The current status of an MLModel. This element can have one of the following values:

    *
      *
    • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
    • *
    • INPROGRESS - The creation process is underway.
    • *
    • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
    • *
    • COMPLETED - The creation process completed successfully.
    • *
    • DELETED - The MLModel is marked as deleted. It isn't usable.
    • * @see EntityStatus */ public String getStatus() { return this.status; } /** *

      * The current status of an MLModel. This element can have one of the following values: *

      *
        *
      • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
      • *
      • INPROGRESS - The creation process is underway.
      • *
      • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
      • *
      • COMPLETED - The creation process completed successfully.
      • *
      • DELETED - The MLModel is marked as deleted. It isn't usable.
      • *
      * * @param status * The current status of an MLModel. This element can have one of the following values:

      *
        *
      • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
      • *
      • INPROGRESS - The creation process is underway.
      • *
      • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
      • *
      • COMPLETED - The creation process completed successfully.
      • *
      • DELETED - The MLModel is marked as deleted. It isn't usable.
      • * @return Returns a reference to this object so that method calls can be chained together. * @see EntityStatus */ public MLModel withStatus(String status) { setStatus(status); return this; } /** *

        * The current status of an MLModel. This element can have one of the following values: *

        *
          *
        • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
        • *
        • INPROGRESS - The creation process is underway.
        • *
        • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
        • *
        • COMPLETED - The creation process completed successfully.
        • *
        • DELETED - The MLModel is marked as deleted. It isn't usable.
        • *
        * * @param status * The current status of an MLModel. This element can have one of the following values:

        *
          *
        • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
        • *
        • INPROGRESS - The creation process is underway.
        • *
        • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
        • *
        • COMPLETED - The creation process completed successfully.
        • *
        • DELETED - The MLModel is marked as deleted. It isn't usable.
        • * @see EntityStatus */ public void setStatus(EntityStatus status) { this.status = status.toString(); } /** *

          * The current status of an MLModel. This element can have one of the following values: *

          *
            *
          • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
          • *
          • INPROGRESS - The creation process is underway.
          • *
          • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
          • *
          • COMPLETED - The creation process completed successfully.
          • *
          • DELETED - The MLModel is marked as deleted. It isn't usable.
          • *
          * * @param status * The current status of an MLModel. This element can have one of the following values:

          *
            *
          • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
          • *
          • INPROGRESS - The creation process is underway.
          • *
          • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
          • *
          • COMPLETED - The creation process completed successfully.
          • *
          • DELETED - The MLModel is marked as deleted. It isn't usable.
          • * @return Returns a reference to this object so that method calls can be chained together. * @see EntityStatus */ public MLModel withStatus(EntityStatus status) { setStatus(status); return this; } /** * @param sizeInBytes */ public void setSizeInBytes(Long sizeInBytes) { this.sizeInBytes = sizeInBytes; } /** * @return */ public Long getSizeInBytes() { return this.sizeInBytes; } /** * @param sizeInBytes * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withSizeInBytes(Long sizeInBytes) { setSizeInBytes(sizeInBytes); return this; } /** *

            * The current endpoint of the MLModel. *

            * * @param endpointInfo * The current endpoint of the MLModel. */ public void setEndpointInfo(RealtimeEndpointInfo endpointInfo) { this.endpointInfo = endpointInfo; } /** *

            * The current endpoint of the MLModel. *

            * * @return The current endpoint of the MLModel. */ public RealtimeEndpointInfo getEndpointInfo() { return this.endpointInfo; } /** *

            * The current endpoint of the MLModel. *

            * * @param endpointInfo * The current endpoint of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withEndpointInfo(RealtimeEndpointInfo endpointInfo) { setEndpointInfo(endpointInfo); return this; } /** *

            * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

            *

            * The following is the current set of training parameters: *

            *
              *
            • *

              * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

              *

              * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

              *
            • *
            • *

              * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

              *
            • *
            • *

              * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. *

              *
            • *
            • *

              * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the * data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

              *

              * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

              *
            • *
            • *

              * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

              *

              * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

              *
            • *
            * * @return A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

            *

            * The following is the current set of training parameters: *

            *
              *
            • *

              * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

              *

              * The value is an integer that ranges from 100000 to 2147483648. The default * value is 33554432. *

              *
            • *
            • *

              * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

              *
            • *
            • *

              * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves * a model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. *

              *
            • *
            • *

              * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls * overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to * zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such * as 1.0E-08. *

              *

              * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

              *
            • *
            • *

              * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero * values. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

              *

              * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

              *
            • */ public java.util.Map getTrainingParameters() { if (trainingParameters == null) { trainingParameters = new com.amazonaws.internal.SdkInternalMap(); } return trainingParameters; } /** *

              * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

              *

              * The following is the current set of training parameters: *

              *
                *
              • *

                * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

                *

                * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

                *
              • *
              • *

                * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

                *
              • *
              • *

                * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. *

                *
              • *
              • *

                * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the * data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

                *

                * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

                *
              • *
              • *

                * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

                *

                * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

                *
              • *
              * * @param trainingParameters * A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

              *

              * The following is the current set of training parameters: *

              *
                *
              • *

                * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

                *

                * The value is an integer that ranges from 100000 to 2147483648. The default value * is 33554432. *

                *
              • *
              • *

                * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

                *
              • *
              • *

                * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. *

                *
              • *
              • *

                * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls * overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, * resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

                *

                * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

                *
              • *
              • *

                * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero * values. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

                *

                * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

                *
              • */ public void setTrainingParameters(java.util.Map trainingParameters) { this.trainingParameters = trainingParameters == null ? null : new com.amazonaws.internal.SdkInternalMap(trainingParameters); } /** *

                * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

                *

                * The following is the current set of training parameters: *

                *
                  *
                • *

                  * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

                  *

                  * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

                  *
                • *
                • *

                  * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

                  *
                • *
                • *

                  * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. *

                  *
                • *
                • *

                  * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the * data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

                  *

                  * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

                  *
                • *
                • *

                  * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

                  *

                  * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

                  *
                • *
                * * @param trainingParameters * A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

                *

                * The following is the current set of training parameters: *

                *
                  *
                • *

                  * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

                  *

                  * The value is an integer that ranges from 100000 to 2147483648. The default value * is 33554432. *

                  *
                • *
                • *

                  * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

                  *
                • *
                • *

                  * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. *

                  *
                • *
                • *

                  * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls * overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, * resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

                  *

                  * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

                  *
                • *
                • *

                  * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero * values. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

                  *

                  * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

                  *
                • * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withTrainingParameters(java.util.Map trainingParameters) { setTrainingParameters(trainingParameters); return this; } public MLModel addTrainingParametersEntry(String key, String value) { if (null == this.trainingParameters) { this.trainingParameters = new com.amazonaws.internal.SdkInternalMap(); } if (this.trainingParameters.containsKey(key)) throw new IllegalArgumentException("Duplicated keys (" + key.toString() + ") are provided."); this.trainingParameters.put(key, value); return this; } /** * Removes all the entries added into TrainingParameters. * * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel clearTrainingParametersEntries() { this.trainingParameters = null; return this; } /** *

                  * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

                  * * @param inputDataLocationS3 * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). */ public void setInputDataLocationS3(String inputDataLocationS3) { this.inputDataLocationS3 = inputDataLocationS3; } /** *

                  * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

                  * * @return The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). */ public String getInputDataLocationS3() { return this.inputDataLocationS3; } /** *

                  * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

                  * * @param inputDataLocationS3 * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withInputDataLocationS3(String inputDataLocationS3) { setInputDataLocationS3(inputDataLocationS3); return this; } /** *

                  * The algorithm used to train the MLModel. The following algorithm is supported: *

                  *
                    *
                  • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
                  • *
                  * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                  *
                    *
                  • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                  • * @see Algorithm */ public void setAlgorithm(String algorithm) { this.algorithm = algorithm; } /** *

                    * The algorithm used to train the MLModel. The following algorithm is supported: *

                    *
                      *
                    • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
                    • *
                    * * @return The algorithm used to train the MLModel. The following algorithm is supported:

                    *
                      *
                    • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                    • * @see Algorithm */ public String getAlgorithm() { return this.algorithm; } /** *

                      * The algorithm used to train the MLModel. The following algorithm is supported: *

                      *
                        *
                      • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
                      • *
                      * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                      *
                        *
                      • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                      • * @return Returns a reference to this object so that method calls can be chained together. * @see Algorithm */ public MLModel withAlgorithm(String algorithm) { setAlgorithm(algorithm); return this; } /** *

                        * The algorithm used to train the MLModel. The following algorithm is supported: *

                        *
                          *
                        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
                        • *
                        * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                        *
                          *
                        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                        • * @see Algorithm */ public void setAlgorithm(Algorithm algorithm) { this.algorithm = algorithm.toString(); } /** *

                          * The algorithm used to train the MLModel. The following algorithm is supported: *

                          *
                            *
                          • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
                          • *
                          * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                          *
                            *
                          • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                          • * @return Returns a reference to this object so that method calls can be chained together. * @see Algorithm */ public MLModel withAlgorithm(Algorithm algorithm) { setAlgorithm(algorithm); return this; } /** *

                            * Identifies the MLModel category. The following are the available types: *

                            *
                              *
                            • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
                            • *
                            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                            • *
                            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                            • *
                            * * @param mLModelType * Identifies the MLModel category. The following are the available types:

                            *
                              *
                            • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                            • *
                            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                            • *
                            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                            • * @see MLModelType */ public void setMLModelType(String mLModelType) { this.mLModelType = mLModelType; } /** *

                              * Identifies the MLModel category. The following are the available types: *

                              *
                                *
                              • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
                              • *
                              • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                              • *
                              • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                              • *
                              * * @return Identifies the MLModel category. The following are the available types:

                              *
                                *
                              • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                              • *
                              • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                              • *
                              • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                              • * @see MLModelType */ public String getMLModelType() { return this.mLModelType; } /** *

                                * Identifies the MLModel category. The following are the available types: *

                                *
                                  *
                                • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
                                • *
                                • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                • *
                                • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                • *
                                * * @param mLModelType * Identifies the MLModel category. The following are the available types:

                                *
                                  *
                                • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                                • *
                                • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                • *
                                • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                • * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ public MLModel withMLModelType(String mLModelType) { setMLModelType(mLModelType); return this; } /** *

                                  * Identifies the MLModel category. The following are the available types: *

                                  *
                                    *
                                  • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
                                  • *
                                  • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                  • *
                                  • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                  • *
                                  * * @param mLModelType * Identifies the MLModel category. The following are the available types:

                                  *
                                    *
                                  • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                                  • *
                                  • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                  • *
                                  • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                  • * @see MLModelType */ public void setMLModelType(MLModelType mLModelType) { this.mLModelType = mLModelType.toString(); } /** *

                                    * Identifies the MLModel category. The following are the available types: *

                                    *
                                      *
                                    • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
                                    • *
                                    • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                    • *
                                    • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                    • *
                                    * * @param mLModelType * Identifies the MLModel category. The following are the available types:

                                    *
                                      *
                                    • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                                    • *
                                    • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                                    • *
                                    • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                                    • * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ public MLModel withMLModelType(MLModelType mLModelType) { setMLModelType(mLModelType); return this; } /** * @param scoreThreshold */ public void setScoreThreshold(Float scoreThreshold) { this.scoreThreshold = scoreThreshold; } /** * @return */ public Float getScoreThreshold() { return this.scoreThreshold; } /** * @param scoreThreshold * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withScoreThreshold(Float scoreThreshold) { setScoreThreshold(scoreThreshold); return this; } /** *

                                      * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

                                      * * @param scoreThresholdLastUpdatedAt * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. */ public void setScoreThresholdLastUpdatedAt(java.util.Date scoreThresholdLastUpdatedAt) { this.scoreThresholdLastUpdatedAt = scoreThresholdLastUpdatedAt; } /** *

                                      * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

                                      * * @return The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. */ public java.util.Date getScoreThresholdLastUpdatedAt() { return this.scoreThresholdLastUpdatedAt; } /** *

                                      * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

                                      * * @param scoreThresholdLastUpdatedAt * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withScoreThresholdLastUpdatedAt(java.util.Date scoreThresholdLastUpdatedAt) { setScoreThresholdLastUpdatedAt(scoreThresholdLastUpdatedAt); return this; } /** *

                                      * A description of the most recent details about accessing the MLModel. *

                                      * * @param message * A description of the most recent details about accessing the MLModel. */ public void setMessage(String message) { this.message = message; } /** *

                                      * A description of the most recent details about accessing the MLModel. *

                                      * * @return A description of the most recent details about accessing the MLModel. */ public String getMessage() { return this.message; } /** *

                                      * A description of the most recent details about accessing the MLModel. *

                                      * * @param message * A description of the most recent details about accessing the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withMessage(String message) { setMessage(message); return this; } /** * @param computeTime */ public void setComputeTime(Long computeTime) { this.computeTime = computeTime; } /** * @return */ public Long getComputeTime() { return this.computeTime; } /** * @param computeTime * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withComputeTime(Long computeTime) { setComputeTime(computeTime); return this; } /** * @param finishedAt */ public void setFinishedAt(java.util.Date finishedAt) { this.finishedAt = finishedAt; } /** * @return */ public java.util.Date getFinishedAt() { return this.finishedAt; } /** * @param finishedAt * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withFinishedAt(java.util.Date finishedAt) { setFinishedAt(finishedAt); return this; } /** * @param startedAt */ public void setStartedAt(java.util.Date startedAt) { this.startedAt = startedAt; } /** * @return */ public java.util.Date getStartedAt() { return this.startedAt; } /** * @param startedAt * @return Returns a reference to this object so that method calls can be chained together. */ public MLModel withStartedAt(java.util.Date startedAt) { setStartedAt(startedAt); return this; } /** * Returns a string representation of this object; useful for testing and debugging. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMLModelId() != null) sb.append("MLModelId: " + getMLModelId() + ","); if (getTrainingDataSourceId() != null) sb.append("TrainingDataSourceId: " + getTrainingDataSourceId() + ","); if (getCreatedByIamUser() != null) sb.append("CreatedByIamUser: " + getCreatedByIamUser() + ","); if (getCreatedAt() != null) sb.append("CreatedAt: " + getCreatedAt() + ","); if (getLastUpdatedAt() != null) sb.append("LastUpdatedAt: " + getLastUpdatedAt() + ","); if (getName() != null) sb.append("Name: " + getName() + ","); if (getStatus() != null) sb.append("Status: " + getStatus() + ","); if (getSizeInBytes() != null) sb.append("SizeInBytes: " + getSizeInBytes() + ","); if (getEndpointInfo() != null) sb.append("EndpointInfo: " + getEndpointInfo() + ","); if (getTrainingParameters() != null) sb.append("TrainingParameters: " + getTrainingParameters() + ","); if (getInputDataLocationS3() != null) sb.append("InputDataLocationS3: " + getInputDataLocationS3() + ","); if (getAlgorithm() != null) sb.append("Algorithm: " + getAlgorithm() + ","); if (getMLModelType() != null) sb.append("MLModelType: " + getMLModelType() + ","); if (getScoreThreshold() != null) sb.append("ScoreThreshold: " + getScoreThreshold() + ","); if (getScoreThresholdLastUpdatedAt() != null) sb.append("ScoreThresholdLastUpdatedAt: " + getScoreThresholdLastUpdatedAt() + ","); if (getMessage() != null) sb.append("Message: " + getMessage() + ","); if (getComputeTime() != null) sb.append("ComputeTime: " + getComputeTime() + ","); if (getFinishedAt() != null) sb.append("FinishedAt: " + getFinishedAt() + ","); if (getStartedAt() != null) sb.append("StartedAt: " + getStartedAt()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof MLModel == false) return false; MLModel other = (MLModel) obj; if (other.getMLModelId() == null ^ this.getMLModelId() == null) return false; if (other.getMLModelId() != null && other.getMLModelId().equals(this.getMLModelId()) == false) return false; if (other.getTrainingDataSourceId() == null ^ this.getTrainingDataSourceId() == null) return false; if (other.getTrainingDataSourceId() != null && other.getTrainingDataSourceId().equals(this.getTrainingDataSourceId()) == false) return false; if (other.getCreatedByIamUser() == null ^ this.getCreatedByIamUser() == null) return false; if (other.getCreatedByIamUser() != null && other.getCreatedByIamUser().equals(this.getCreatedByIamUser()) == false) return false; if (other.getCreatedAt() == null ^ this.getCreatedAt() == null) return false; if (other.getCreatedAt() != null && other.getCreatedAt().equals(this.getCreatedAt()) == false) return false; if (other.getLastUpdatedAt() == null ^ this.getLastUpdatedAt() == null) return false; if (other.getLastUpdatedAt() != null && other.getLastUpdatedAt().equals(this.getLastUpdatedAt()) == false) return false; if (other.getName() == null ^ this.getName() == null) return false; if (other.getName() != null && other.getName().equals(this.getName()) == false) return false; if (other.getStatus() == null ^ this.getStatus() == null) return false; if (other.getStatus() != null && other.getStatus().equals(this.getStatus()) == false) return false; if (other.getSizeInBytes() == null ^ this.getSizeInBytes() == null) return false; if (other.getSizeInBytes() != null && other.getSizeInBytes().equals(this.getSizeInBytes()) == false) return false; if (other.getEndpointInfo() == null ^ this.getEndpointInfo() == null) return false; if (other.getEndpointInfo() != null && other.getEndpointInfo().equals(this.getEndpointInfo()) == false) return false; if (other.getTrainingParameters() == null ^ this.getTrainingParameters() == null) return false; if (other.getTrainingParameters() != null && other.getTrainingParameters().equals(this.getTrainingParameters()) == false) return false; if (other.getInputDataLocationS3() == null ^ this.getInputDataLocationS3() == null) return false; if (other.getInputDataLocationS3() != null && other.getInputDataLocationS3().equals(this.getInputDataLocationS3()) == false) return false; if (other.getAlgorithm() == null ^ this.getAlgorithm() == null) return false; if (other.getAlgorithm() != null && other.getAlgorithm().equals(this.getAlgorithm()) == false) return false; if (other.getMLModelType() == null ^ this.getMLModelType() == null) return false; if (other.getMLModelType() != null && other.getMLModelType().equals(this.getMLModelType()) == false) return false; if (other.getScoreThreshold() == null ^ this.getScoreThreshold() == null) return false; if (other.getScoreThreshold() != null && other.getScoreThreshold().equals(this.getScoreThreshold()) == false) return false; if (other.getScoreThresholdLastUpdatedAt() == null ^ this.getScoreThresholdLastUpdatedAt() == null) return false; if (other.getScoreThresholdLastUpdatedAt() != null && other.getScoreThresholdLastUpdatedAt().equals(this.getScoreThresholdLastUpdatedAt()) == false) return false; if (other.getMessage() == null ^ this.getMessage() == null) return false; if (other.getMessage() != null && other.getMessage().equals(this.getMessage()) == false) return false; if (other.getComputeTime() == null ^ this.getComputeTime() == null) return false; if (other.getComputeTime() != null && other.getComputeTime().equals(this.getComputeTime()) == false) return false; if (other.getFinishedAt() == null ^ this.getFinishedAt() == null) return false; if (other.getFinishedAt() != null && other.getFinishedAt().equals(this.getFinishedAt()) == false) return false; if (other.getStartedAt() == null ^ this.getStartedAt() == null) return false; if (other.getStartedAt() != null && other.getStartedAt().equals(this.getStartedAt()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode()); hashCode = prime * hashCode + ((getTrainingDataSourceId() == null) ? 0 : getTrainingDataSourceId().hashCode()); hashCode = prime * hashCode + ((getCreatedByIamUser() == null) ? 0 : getCreatedByIamUser().hashCode()); hashCode = prime * hashCode + ((getCreatedAt() == null) ? 0 : getCreatedAt().hashCode()); hashCode = prime * hashCode + ((getLastUpdatedAt() == null) ? 0 : getLastUpdatedAt().hashCode()); hashCode = prime * hashCode + ((getName() == null) ? 0 : getName().hashCode()); hashCode = prime * hashCode + ((getStatus() == null) ? 0 : getStatus().hashCode()); hashCode = prime * hashCode + ((getSizeInBytes() == null) ? 0 : getSizeInBytes().hashCode()); hashCode = prime * hashCode + ((getEndpointInfo() == null) ? 0 : getEndpointInfo().hashCode()); hashCode = prime * hashCode + ((getTrainingParameters() == null) ? 0 : getTrainingParameters().hashCode()); hashCode = prime * hashCode + ((getInputDataLocationS3() == null) ? 0 : getInputDataLocationS3().hashCode()); hashCode = prime * hashCode + ((getAlgorithm() == null) ? 0 : getAlgorithm().hashCode()); hashCode = prime * hashCode + ((getMLModelType() == null) ? 0 : getMLModelType().hashCode()); hashCode = prime * hashCode + ((getScoreThreshold() == null) ? 0 : getScoreThreshold().hashCode()); hashCode = prime * hashCode + ((getScoreThresholdLastUpdatedAt() == null) ? 0 : getScoreThresholdLastUpdatedAt().hashCode()); hashCode = prime * hashCode + ((getMessage() == null) ? 0 : getMessage().hashCode()); hashCode = prime * hashCode + ((getComputeTime() == null) ? 0 : getComputeTime().hashCode()); hashCode = prime * hashCode + ((getFinishedAt() == null) ? 0 : getFinishedAt().hashCode()); hashCode = prime * hashCode + ((getStartedAt() == null) ? 0 : getStartedAt().hashCode()); return hashCode; } @Override public MLModel clone() { try { return (MLModel) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy