All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.CreateMLModelRequest Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Machine Learning module holds the client classes that is used for communicating with Amazon Machine Learning Service

There is a newer version: 1.11.69
Show newest version
/*
 * Copyright 2010-2016 Amazon.com, Inc. or its affiliates. All Rights
 * Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;
import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 */
public class CreateMLModelRequest extends AmazonWebServiceRequest implements
        Serializable, Cloneable {

    /**
     * 

* A user-supplied ID that uniquely identifies the MLModel. *

*/ private String mLModelId; /** *

* A user-supplied name or description of the MLModel. *

*/ private String mLModelName; /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

*/ private String mLModelType; /** *

* A list of the training parameters in the MLModel. The list * is implemented as a map of key/value pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.l1RegularizationAmount - Coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to zero, resulting in sparse feature * set. If you use this parameter, start by specifying a small value such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L1 normalization. The parameter cannot be used when * L2 is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - Coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to small, nonzero values. If you use * this parameter, start by specifying a small value such as 1.0E-08. *

    *

    * The valuseis a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L2 normalization. This cannot be used when L1 is * specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.maxPasses - Number of times that the training process * traverses the observations to build the MLModel. The value * is an integer that ranges from 1 to 10000. The default value is 10. *

    *
  • *
  • *

    * sgd.maxMLModelSizeInBytes - Maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

    *
  • *
*/ private com.amazonaws.internal.SdkInternalMap parameters; /** *

* The DataSource that points to the training data. *

*/ private String trainingDataSourceId; /** *

* The data recipe for creating MLModel. You must specify * either the recipe or its URI. If you don’t specify a recipe or its URI, * Amazon ML creates a default. *

*/ private String recipe; /** *

* The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML * creates a default. *

*/ private String recipeUri; /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @param mLModelId * A user-supplied ID that uniquely identifies the * MLModel. */ public void setMLModelId(String mLModelId) { this.mLModelId = mLModelId; } /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @return A user-supplied ID that uniquely identifies the * MLModel. */ public String getMLModelId() { return this.mLModelId; } /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @param mLModelId * A user-supplied ID that uniquely identifies the * MLModel. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withMLModelId(String mLModelId) { setMLModelId(mLModelId); return this; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. */ public void setMLModelName(String mLModelName) { this.mLModelName = mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String getMLModelName() { return this.mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withMLModelName(String mLModelName) { setMLModelName(mLModelName); return this; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public void setMLModelType(String mLModelType) { this.mLModelType = mLModelType; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @return The category of supervised learning that this * MLModel will address. Choose from the following * types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public String getMLModelType() { return this.mLModelType; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @return Returns a reference to this object so that method calls can be * chained together. * @see MLModelType */ public CreateMLModelRequest withMLModelType(String mLModelType) { setMLModelType(mLModelType); return this; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public void setMLModelType(MLModelType mLModelType) { this.mLModelType = mLModelType.toString(); } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @return Returns a reference to this object so that method calls can be * chained together. * @see MLModelType */ public CreateMLModelRequest withMLModelType(MLModelType mLModelType) { setMLModelType(mLModelType); return this; } /** *

* A list of the training parameters in the MLModel. The list * is implemented as a map of key/value pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.l1RegularizationAmount - Coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to zero, resulting in sparse feature * set. If you use this parameter, start by specifying a small value such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L1 normalization. The parameter cannot be used when * L2 is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - Coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to small, nonzero values. If you use * this parameter, start by specifying a small value such as 1.0E-08. *

    *

    * The valuseis a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L2 normalization. This cannot be used when L1 is * specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.maxPasses - Number of times that the training process * traverses the observations to build the MLModel. The value * is an integer that ranges from 1 to 10000. The default value is 10. *

    *
  • *
  • *

    * sgd.maxMLModelSizeInBytes - Maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

    *
  • *
* * @return A list of the training parameters in the MLModel. * The list is implemented as a map of key/value pairs.

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.l1RegularizationAmount - Coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients * to zero, resulting in sparse feature set. If you use this * parameter, start by specifying a small value such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L1 normalization. The parameter cannot be * used when L2 is specified. Use this parameter * sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - Coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients * to small, nonzero values. If you use this parameter, start by * specifying a small value such as 1.0E-08. *

    *

    * The valuseis a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L2 normalization. This cannot be used when * L1 is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.maxPasses - Number of times that the training * process traverses the observations to build the * MLModel. The value is an integer that ranges from 1 * to 10000. The default value is 10. *

    *
  • *
  • *

    * sgd.maxMLModelSizeInBytes - Maximum allowed size of * the model. Depending on the input data, the size of the model * might affect its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. * The default value is 33554432. *

    *
  • */ public java.util.Map getParameters() { if (parameters == null) { parameters = new com.amazonaws.internal.SdkInternalMap(); } return parameters; } /** *

    * A list of the training parameters in the MLModel. The list * is implemented as a map of key/value pairs. *

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.l1RegularizationAmount - Coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to zero, resulting in sparse feature * set. If you use this parameter, start by specifying a small value such as * 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L1 normalization. The parameter cannot be used when * L2 is specified. Use this parameter sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - Coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to small, nonzero values. If you use * this parameter, start by specifying a small value such as 1.0E-08. *

      *

      * The valuseis a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L2 normalization. This cannot be used when L1 is * specified. Use this parameter sparingly. *

      *
    • *
    • *

      * sgd.maxPasses - Number of times that the training process * traverses the observations to build the MLModel. The value * is an integer that ranges from 1 to 10000. The default value is 10. *

      *
    • *
    • *

      * sgd.maxMLModelSizeInBytes - Maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

      *

      * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

      *
    • *
    * * @param parameters * A list of the training parameters in the MLModel. The * list is implemented as a map of key/value pairs.

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.l1RegularizationAmount - Coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * zero, resulting in sparse feature set. If you use this parameter, * start by specifying a small value such as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L1 normalization. The parameter cannot be * used when L2 is specified. Use this parameter * sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - Coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * small, nonzero values. If you use this parameter, start by * specifying a small value such as 1.0E-08. *

      *

      * The valuseis a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L2 normalization. This cannot be used when * L1 is specified. Use this parameter sparingly. *

      *
    • *
    • *

      * sgd.maxPasses - Number of times that the training * process traverses the observations to build the * MLModel. The value is an integer that ranges from 1 * to 10000. The default value is 10. *

      *
    • *
    • *

      * sgd.maxMLModelSizeInBytes - Maximum allowed size of * the model. Depending on the input data, the size of the model * might affect its performance. *

      *

      * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

      *
    • */ public void setParameters(java.util.Map parameters) { this.parameters = parameters == null ? null : new com.amazonaws.internal.SdkInternalMap( parameters); } /** *

      * A list of the training parameters in the MLModel. The list * is implemented as a map of key/value pairs. *

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.l1RegularizationAmount - Coefficient regularization L1 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to zero, resulting in sparse feature * set. If you use this parameter, start by specifying a small value such as * 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L1 normalization. The parameter cannot be used when * L2 is specified. Use this parameter sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - Coefficient regularization L2 * norm. It controls overfitting the data by penalizing large coefficients. * This tends to drive coefficients to small, nonzero values. If you use * this parameter, start by specifying a small value such as 1.0E-08. *

        *

        * The valuseis a double that ranges from 0 to MAX_DOUBLE. The default is * not to use L2 normalization. This cannot be used when L1 is * specified. Use this parameter sparingly. *

        *
      • *
      • *

        * sgd.maxPasses - Number of times that the training process * traverses the observations to build the MLModel. The value * is an integer that ranges from 1 to 10000. The default value is 10. *

        *
      • *
      • *

        * sgd.maxMLModelSizeInBytes - Maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

        *

        * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

        *
      • *
      * * @param parameters * A list of the training parameters in the MLModel. The * list is implemented as a map of key/value pairs.

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.l1RegularizationAmount - Coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * zero, resulting in sparse feature set. If you use this parameter, * start by specifying a small value such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L1 normalization. The parameter cannot be * used when L2 is specified. Use this parameter * sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - Coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * small, nonzero values. If you use this parameter, start by * specifying a small value such as 1.0E-08. *

        *

        * The valuseis a double that ranges from 0 to MAX_DOUBLE. The * default is not to use L2 normalization. This cannot be used when * L1 is specified. Use this parameter sparingly. *

        *
      • *
      • *

        * sgd.maxPasses - Number of times that the training * process traverses the observations to build the * MLModel. The value is an integer that ranges from 1 * to 10000. The default value is 10. *

        *
      • *
      • *

        * sgd.maxMLModelSizeInBytes - Maximum allowed size of * the model. Depending on the input data, the size of the model * might affect its performance. *

        *

        * The value is an integer that ranges from 100000 to 2147483648. The * default value is 33554432. *

        *
      • * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withParameters( java.util.Map parameters) { setParameters(parameters); return this; } public CreateMLModelRequest addParametersEntry(String key, String value) { if (null == this.parameters) { this.parameters = new com.amazonaws.internal.SdkInternalMap(); } if (this.parameters.containsKey(key)) throw new IllegalArgumentException("Duplicated keys (" + key.toString() + ") are provided."); this.parameters.put(key, value); return this; } /** * Removes all the entries added into Parameters. <p> Returns a reference * to this object so that method calls can be chained together. */ public CreateMLModelRequest clearParametersEntries() { this.parameters = null; return this; } /** *

        * The DataSource that points to the training data. *

        * * @param trainingDataSourceId * The DataSource that points to the training data. */ public void setTrainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; } /** *

        * The DataSource that points to the training data. *

        * * @return The DataSource that points to the training data. */ public String getTrainingDataSourceId() { return this.trainingDataSourceId; } /** *

        * The DataSource that points to the training data. *

        * * @param trainingDataSourceId * The DataSource that points to the training data. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withTrainingDataSourceId( String trainingDataSourceId) { setTrainingDataSourceId(trainingDataSourceId); return this; } /** *

        * The data recipe for creating MLModel. You must specify * either the recipe or its URI. If you don’t specify a recipe or its URI, * Amazon ML creates a default. *

        * * @param recipe * The data recipe for creating MLModel. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. */ public void setRecipe(String recipe) { this.recipe = recipe; } /** *

        * The data recipe for creating MLModel. You must specify * either the recipe or its URI. If you don’t specify a recipe or its URI, * Amazon ML creates a default. *

        * * @return The data recipe for creating MLModel. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. */ public String getRecipe() { return this.recipe; } /** *

        * The data recipe for creating MLModel. You must specify * either the recipe or its URI. If you don’t specify a recipe or its URI, * Amazon ML creates a default. *

        * * @param recipe * The data recipe for creating MLModel. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withRecipe(String recipe) { setRecipe(recipe); return this; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML * creates a default. *

        * * @param recipeUri * The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. */ public void setRecipeUri(String recipeUri) { this.recipeUri = recipeUri; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML * creates a default. *

        * * @return The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. */ public String getRecipeUri() { return this.recipeUri; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don’t specify a recipe or its URI, Amazon ML * creates a default. *

        * * @param recipeUri * The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don’t specify a * recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withRecipeUri(String recipeUri) { setRecipeUri(recipeUri); return this; } /** * Returns a string representation of this object; useful for testing and * debugging. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMLModelId() != null) sb.append("MLModelId: " + getMLModelId() + ","); if (getMLModelName() != null) sb.append("MLModelName: " + getMLModelName() + ","); if (getMLModelType() != null) sb.append("MLModelType: " + getMLModelType() + ","); if (getParameters() != null) sb.append("Parameters: " + getParameters() + ","); if (getTrainingDataSourceId() != null) sb.append("TrainingDataSourceId: " + getTrainingDataSourceId() + ","); if (getRecipe() != null) sb.append("Recipe: " + getRecipe() + ","); if (getRecipeUri() != null) sb.append("RecipeUri: " + getRecipeUri()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateMLModelRequest == false) return false; CreateMLModelRequest other = (CreateMLModelRequest) obj; if (other.getMLModelId() == null ^ this.getMLModelId() == null) return false; if (other.getMLModelId() != null && other.getMLModelId().equals(this.getMLModelId()) == false) return false; if (other.getMLModelName() == null ^ this.getMLModelName() == null) return false; if (other.getMLModelName() != null && other.getMLModelName().equals(this.getMLModelName()) == false) return false; if (other.getMLModelType() == null ^ this.getMLModelType() == null) return false; if (other.getMLModelType() != null && other.getMLModelType().equals(this.getMLModelType()) == false) return false; if (other.getParameters() == null ^ this.getParameters() == null) return false; if (other.getParameters() != null && other.getParameters().equals(this.getParameters()) == false) return false; if (other.getTrainingDataSourceId() == null ^ this.getTrainingDataSourceId() == null) return false; if (other.getTrainingDataSourceId() != null && other.getTrainingDataSourceId().equals( this.getTrainingDataSourceId()) == false) return false; if (other.getRecipe() == null ^ this.getRecipe() == null) return false; if (other.getRecipe() != null && other.getRecipe().equals(this.getRecipe()) == false) return false; if (other.getRecipeUri() == null ^ this.getRecipeUri() == null) return false; if (other.getRecipeUri() != null && other.getRecipeUri().equals(this.getRecipeUri()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode()); hashCode = prime * hashCode + ((getMLModelName() == null) ? 0 : getMLModelName().hashCode()); hashCode = prime * hashCode + ((getMLModelType() == null) ? 0 : getMLModelType().hashCode()); hashCode = prime * hashCode + ((getParameters() == null) ? 0 : getParameters().hashCode()); hashCode = prime * hashCode + ((getTrainingDataSourceId() == null) ? 0 : getTrainingDataSourceId().hashCode()); hashCode = prime * hashCode + ((getRecipe() == null) ? 0 : getRecipe().hashCode()); hashCode = prime * hashCode + ((getRecipeUri() == null) ? 0 : getRecipeUri().hashCode()); return hashCode; } @Override public CreateMLModelRequest clone() { return (CreateMLModelRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy