com.amazonaws.services.machinelearning.model.CreateDataSourceFromS3Request Maven / Gradle / Ivy
Show all versions of aws-java-sdk-machinelearning Show documentation
/*
* Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.machinelearning.model;
import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.AmazonWebServiceRequest;
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreateDataSourceFromS3Request extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {
/**
*
* A user-supplied identifier that uniquely identifies the DataSource
.
*
*/
private String dataSourceId;
/**
*
* A user-supplied name or description of the DataSource
.
*
*/
private String dataSourceName;
/**
*
* The data specification of a DataSource
:
*
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*
*/
private S3DataSpec dataSpec;
/**
*
* The compute statistics for a DataSource
. The statistics are generated from the observation data
* referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
* training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*
*/
private Boolean computeStatistics;
/**
*
* A user-supplied identifier that uniquely identifies the DataSource
.
*
*
* @param dataSourceId
* A user-supplied identifier that uniquely identifies the DataSource
.
*/
public void setDataSourceId(String dataSourceId) {
this.dataSourceId = dataSourceId;
}
/**
*
* A user-supplied identifier that uniquely identifies the DataSource
.
*
*
* @return A user-supplied identifier that uniquely identifies the DataSource
.
*/
public String getDataSourceId() {
return this.dataSourceId;
}
/**
*
* A user-supplied identifier that uniquely identifies the DataSource
.
*
*
* @param dataSourceId
* A user-supplied identifier that uniquely identifies the DataSource
.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public CreateDataSourceFromS3Request withDataSourceId(String dataSourceId) {
setDataSourceId(dataSourceId);
return this;
}
/**
*
* A user-supplied name or description of the DataSource
.
*
*
* @param dataSourceName
* A user-supplied name or description of the DataSource
.
*/
public void setDataSourceName(String dataSourceName) {
this.dataSourceName = dataSourceName;
}
/**
*
* A user-supplied name or description of the DataSource
.
*
*
* @return A user-supplied name or description of the DataSource
.
*/
public String getDataSourceName() {
return this.dataSourceName;
}
/**
*
* A user-supplied name or description of the DataSource
.
*
*
* @param dataSourceName
* A user-supplied name or description of the DataSource
.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public CreateDataSourceFromS3Request withDataSourceName(String dataSourceName) {
setDataSourceName(dataSourceName);
return this;
}
/**
*
* The data specification of a DataSource
:
*
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*
*
* @param dataSpec
* The data specification of a DataSource
:
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*/
public void setDataSpec(S3DataSpec dataSpec) {
this.dataSpec = dataSpec;
}
/**
*
* The data specification of a DataSource
:
*
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*
*
* @return The data specification of a DataSource
:
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*/
public S3DataSpec getDataSpec() {
return this.dataSpec;
}
/**
*
* The data specification of a DataSource
:
*
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
*
*
* @param dataSpec
* The data specification of a DataSource
:
*
* -
*
* DataLocationS3 - The Amazon S3 location of the observation data.
*
*
* -
*
* DataSchemaLocationS3 - The Amazon S3 location of the DataSchema
.
*
*
* -
*
* DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri
is
* specified.
*
*
* -
*
* DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
* Datasource
.
*
*
* Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
*
*
* @return Returns a reference to this object so that method calls can be chained together.
*/
public CreateDataSourceFromS3Request withDataSpec(S3DataSpec dataSpec) {
setDataSpec(dataSpec);
return this;
}
/**
*
* The compute statistics for a DataSource
. The statistics are generated from the observation data
* referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
* training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*
*
* @param computeStatistics
* The compute statistics for a DataSource
. The statistics are generated from the observation
* data referenced by a DataSource
. Amazon ML uses the statistics internally during
* MLModel
training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*/
public void setComputeStatistics(Boolean computeStatistics) {
this.computeStatistics = computeStatistics;
}
/**
*
* The compute statistics for a DataSource
. The statistics are generated from the observation data
* referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
* training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*
*
* @return The compute statistics for a DataSource
. The statistics are generated from the observation
* data referenced by a DataSource
. Amazon ML uses the statistics internally during
* MLModel
training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*/
public Boolean getComputeStatistics() {
return this.computeStatistics;
}
/**
*
* The compute statistics for a DataSource
. The statistics are generated from the observation data
* referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
* training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*
*
* @param computeStatistics
* The compute statistics for a DataSource
. The statistics are generated from the observation
* data referenced by a DataSource
. Amazon ML uses the statistics internally during
* MLModel
training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public CreateDataSourceFromS3Request withComputeStatistics(Boolean computeStatistics) {
setComputeStatistics(computeStatistics);
return this;
}
/**
*
* The compute statistics for a DataSource
. The statistics are generated from the observation data
* referenced by a DataSource
. Amazon ML uses the statistics internally during MLModel
* training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*
*
* @return The compute statistics for a DataSource
. The statistics are generated from the observation
* data referenced by a DataSource
. Amazon ML uses the statistics internally during
* MLModel
training. This parameter must be set to true
if the
*
DataSource
needs to be used for MLModel
training.
*/
public Boolean isComputeStatistics() {
return this.computeStatistics;
}
/**
* Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be
* redacted from this string using a placeholder value.
*
* @return A string representation of this object.
*
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("{");
if (getDataSourceId() != null)
sb.append("DataSourceId: ").append(getDataSourceId()).append(",");
if (getDataSourceName() != null)
sb.append("DataSourceName: ").append(getDataSourceName()).append(",");
if (getDataSpec() != null)
sb.append("DataSpec: ").append(getDataSpec()).append(",");
if (getComputeStatistics() != null)
sb.append("ComputeStatistics: ").append(getComputeStatistics());
sb.append("}");
return sb.toString();
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (obj instanceof CreateDataSourceFromS3Request == false)
return false;
CreateDataSourceFromS3Request other = (CreateDataSourceFromS3Request) obj;
if (other.getDataSourceId() == null ^ this.getDataSourceId() == null)
return false;
if (other.getDataSourceId() != null && other.getDataSourceId().equals(this.getDataSourceId()) == false)
return false;
if (other.getDataSourceName() == null ^ this.getDataSourceName() == null)
return false;
if (other.getDataSourceName() != null && other.getDataSourceName().equals(this.getDataSourceName()) == false)
return false;
if (other.getDataSpec() == null ^ this.getDataSpec() == null)
return false;
if (other.getDataSpec() != null && other.getDataSpec().equals(this.getDataSpec()) == false)
return false;
if (other.getComputeStatistics() == null ^ this.getComputeStatistics() == null)
return false;
if (other.getComputeStatistics() != null && other.getComputeStatistics().equals(this.getComputeStatistics()) == false)
return false;
return true;
}
@Override
public int hashCode() {
final int prime = 31;
int hashCode = 1;
hashCode = prime * hashCode + ((getDataSourceId() == null) ? 0 : getDataSourceId().hashCode());
hashCode = prime * hashCode + ((getDataSourceName() == null) ? 0 : getDataSourceName().hashCode());
hashCode = prime * hashCode + ((getDataSpec() == null) ? 0 : getDataSpec().hashCode());
hashCode = prime * hashCode + ((getComputeStatistics() == null) ? 0 : getComputeStatistics().hashCode());
return hashCode;
}
@Override
public CreateDataSourceFromS3Request clone() {
return (CreateDataSourceFromS3Request) super.clone();
}
}