All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.RedshiftDataSpec Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Machine Learning module holds the client classes that is used for communicating with Amazon Machine Learning Service

There is a newer version: 1.12.778
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* Describes the data specification of an Amazon Redshift DataSource. *

*/ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class RedshiftDataSpec implements Serializable, Cloneable, StructuredPojo { /** *

* Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. *

*/ private RedshiftDatabase databaseInformation; /** *

* Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource. *

*/ private String selectSqlQuery; /** *

* Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift * database. *

*/ private RedshiftDatabaseCredentials databaseCredentials; /** *

* Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. *

*/ private String s3StagingLocation; /** *

* A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input data * is used to create the Datasource. *

*

* There are multiple parameters that control what data is used to create a datasource: *

*
    *
  • *

    * percentBegin *

    *

    * Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. * If you do not include percentBegin and percentEnd, Amazon ML includes all of the data * when creating the datasource. *

    *
  • *
  • *

    * percentEnd *

    *

    * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do * not include percentBegin and percentEnd, Amazon ML includes all of the data when * creating the datasource. *

    *
  • *
  • *

    * complement *

    *

    * The complement parameter instructs Amazon ML to use the data that is not included in the range of * percentBegin to percentEnd to create a datasource. The complement * parameter is useful if you need to create complementary datasources for training and evaluation. To create a * complementary datasource, use the same values for percentBegin and percentEnd, along * with the complement parameter. *

    *

    * For example, the following two datasources do not share any data, and can be used to train and evaluate a model. * The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

    *

    * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

    *

    * Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

    *
  • *
  • *

    * strategy *

    *

    * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

    *

    * The default value for the strategy parameter is sequential, meaning that Amazon ML * takes all of the data records between the percentBegin and percentEnd parameters for * the datasource, in the order that the records appear in the input data. *

    *

    * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

    *

    * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, * set the strategy parameter to random and provide a string that is used as the seed * value for the random data splitting (for example, you can use the S3 path to your data as the random seed * string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number * between 0 and 100, and then selects the rows that have an assigned number between percentBegin and * percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte * offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The * random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. * It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in * training and evaluation datasources containing non-similar data records. *

    *

    * The following two DataRearrangement lines are examples of non-sequentially ordered training and * evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

    *
  • *
*/ private String dataRearrangement; /** *

* A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in the * DataSource. *

*

* A DataSchema is not required if you specify a DataSchemaUri. *

*

* Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following format to * define your DataSchema. *

*

* { "version": "1.0", *

*

* "recordAnnotationFieldName": "F1", *

*

* "recordWeightFieldName": "F2", *

*

* "targetFieldName": "F3", *

*

* "dataFormat": "CSV", *

*

* "dataFileContainsHeader": true, *

*

* "attributes": [ *

*

* { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", * "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": * "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": * "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

*

* "excludedVariableNames": [ "F6" ] } *

*/ private String dataSchema; /** *

* Describes the schema location for an Amazon Redshift DataSource. *

*/ private String dataSchemaUri; /** *

* Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. *

* * @param databaseInformation * Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. */ public void setDatabaseInformation(RedshiftDatabase databaseInformation) { this.databaseInformation = databaseInformation; } /** *

* Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. *

* * @return Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. */ public RedshiftDatabase getDatabaseInformation() { return this.databaseInformation; } /** *

* Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. *

* * @param databaseInformation * Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift * DataSource. * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withDatabaseInformation(RedshiftDatabase databaseInformation) { setDatabaseInformation(databaseInformation); return this; } /** *

* Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource. *

* * @param selectSqlQuery * Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift * DataSource. */ public void setSelectSqlQuery(String selectSqlQuery) { this.selectSqlQuery = selectSqlQuery; } /** *

* Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource. *

* * @return Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift * DataSource. */ public String getSelectSqlQuery() { return this.selectSqlQuery; } /** *

* Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource. *

* * @param selectSqlQuery * Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift * DataSource. * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withSelectSqlQuery(String selectSqlQuery) { setSelectSqlQuery(selectSqlQuery); return this; } /** *

* Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift * database. *

* * @param databaseCredentials * Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon * Redshift database. */ public void setDatabaseCredentials(RedshiftDatabaseCredentials databaseCredentials) { this.databaseCredentials = databaseCredentials; } /** *

* Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift * database. *

* * @return Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon * Redshift database. */ public RedshiftDatabaseCredentials getDatabaseCredentials() { return this.databaseCredentials; } /** *

* Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift * database. *

* * @param databaseCredentials * Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon * Redshift database. * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withDatabaseCredentials(RedshiftDatabaseCredentials databaseCredentials) { setDatabaseCredentials(databaseCredentials); return this; } /** *

* Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. *

* * @param s3StagingLocation * Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. */ public void setS3StagingLocation(String s3StagingLocation) { this.s3StagingLocation = s3StagingLocation; } /** *

* Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. *

* * @return Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. */ public String getS3StagingLocation() { return this.s3StagingLocation; } /** *

* Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. *

* * @param s3StagingLocation * Describes an Amazon S3 location to store the result set of the SelectSqlQuery query. * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withS3StagingLocation(String s3StagingLocation) { setS3StagingLocation(s3StagingLocation); return this; } /** *

* A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input data * is used to create the Datasource. *

*

* There are multiple parameters that control what data is used to create a datasource: *

*
    *
  • *

    * percentBegin *

    *

    * Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. * If you do not include percentBegin and percentEnd, Amazon ML includes all of the data * when creating the datasource. *

    *
  • *
  • *

    * percentEnd *

    *

    * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do * not include percentBegin and percentEnd, Amazon ML includes all of the data when * creating the datasource. *

    *
  • *
  • *

    * complement *

    *

    * The complement parameter instructs Amazon ML to use the data that is not included in the range of * percentBegin to percentEnd to create a datasource. The complement * parameter is useful if you need to create complementary datasources for training and evaluation. To create a * complementary datasource, use the same values for percentBegin and percentEnd, along * with the complement parameter. *

    *

    * For example, the following two datasources do not share any data, and can be used to train and evaluate a model. * The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

    *

    * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

    *

    * Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

    *
  • *
  • *

    * strategy *

    *

    * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

    *

    * The default value for the strategy parameter is sequential, meaning that Amazon ML * takes all of the data records between the percentBegin and percentEnd parameters for * the datasource, in the order that the records appear in the input data. *

    *

    * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

    *

    * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, * set the strategy parameter to random and provide a string that is used as the seed * value for the random data splitting (for example, you can use the S3 path to your data as the random seed * string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number * between 0 and 100, and then selects the rows that have an assigned number between percentBegin and * percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte * offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The * random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. * It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in * training and evaluation datasources containing non-similar data records. *

    *

    * The following two DataRearrangement lines are examples of non-sequentially ordered training and * evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

    *
  • *
* * @param dataRearrangement * A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input * data is used to create the Datasource.

*

* There are multiple parameters that control what data is used to create a datasource: *

*
    *
  • *

    * percentBegin *

    *

    * Use percentBegin to indicate the beginning of the range of the data used to create the * Datasource. If you do not include percentBegin and percentEnd, Amazon ML * includes all of the data when creating the datasource. *

    *
  • *
  • *

    * percentEnd *

    *

    * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If * you do not include percentBegin and percentEnd, Amazon ML includes all of the * data when creating the datasource. *

    *
  • *
  • *

    * complement *

    *

    * The complement parameter instructs Amazon ML to use the data that is not included in the * range of percentBegin to percentEnd to create a datasource. The * complement parameter is useful if you need to create complementary datasources for training * and evaluation. To create a complementary datasource, use the same values for percentBegin * and percentEnd, along with the complement parameter. *

    *

    * For example, the following two datasources do not share any data, and can be used to train and evaluate a * model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

    *

    * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

    *
  • *
  • *

    * strategy *

    *

    * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

    *

    * The default value for the strategy parameter is sequential, meaning that Amazon * ML takes all of the data records between the percentBegin and percentEnd * parameters for the datasource, in the order that the records appear in the input data. *

    *

    * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

    *

    * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd * parameters, set the strategy parameter to random and provide a string that is * used as the seed value for the random data splitting (for example, you can use the S3 path to your data as * the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a * pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between * percentBegin and percentEnd. Pseudo-random numbers are assigned using both the * input seed string value and the byte offset as a seed, so changing the data results in a different split. * Any existing ordering is preserved. The random splitting strategy ensures that variables in the training * and evaluation data are distributed similarly. It is useful in the cases where the input data may have an * implicit sort order, which would otherwise result in training and evaluation datasources containing * non-similar data records. *

    *

    * The following two DataRearrangement lines are examples of non-sequentially ordered training * and evaluation datasources: *

    *

    * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

    *

    * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

    *
  • */ public void setDataRearrangement(String dataRearrangement) { this.dataRearrangement = dataRearrangement; } /** *

    * A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input data * is used to create the Datasource. *

    *

    * There are multiple parameters that control what data is used to create a datasource: *

    *
      *
    • *

      * percentBegin *

      *

      * Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. * If you do not include percentBegin and percentEnd, Amazon ML includes all of the data * when creating the datasource. *

      *
    • *
    • *

      * percentEnd *

      *

      * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do * not include percentBegin and percentEnd, Amazon ML includes all of the data when * creating the datasource. *

      *
    • *
    • *

      * complement *

      *

      * The complement parameter instructs Amazon ML to use the data that is not included in the range of * percentBegin to percentEnd to create a datasource. The complement * parameter is useful if you need to create complementary datasources for training and evaluation. To create a * complementary datasource, use the same values for percentBegin and percentEnd, along * with the complement parameter. *

      *

      * For example, the following two datasources do not share any data, and can be used to train and evaluate a model. * The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

      *

      * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

      *

      * Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

      *
    • *
    • *

      * strategy *

      *

      * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

      *

      * The default value for the strategy parameter is sequential, meaning that Amazon ML * takes all of the data records between the percentBegin and percentEnd parameters for * the datasource, in the order that the records appear in the input data. *

      *

      * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

      *

      * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

      *

      * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

      *

      * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, * set the strategy parameter to random and provide a string that is used as the seed * value for the random data splitting (for example, you can use the S3 path to your data as the random seed * string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number * between 0 and 100, and then selects the rows that have an assigned number between percentBegin and * percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte * offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The * random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. * It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in * training and evaluation datasources containing non-similar data records. *

      *

      * The following two DataRearrangement lines are examples of non-sequentially ordered training and * evaluation datasources: *

      *

      * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

      *

      * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

      *
    • *
    * * @return A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the * input data is used to create the Datasource.

    *

    * There are multiple parameters that control what data is used to create a datasource: *

    *
      *
    • *

      * percentBegin *

      *

      * Use percentBegin to indicate the beginning of the range of the data used to create the * Datasource. If you do not include percentBegin and percentEnd, Amazon ML * includes all of the data when creating the datasource. *

      *
    • *
    • *

      * percentEnd *

      *

      * Use percentEnd to indicate the end of the range of the data used to create the Datasource. * If you do not include percentBegin and percentEnd, Amazon ML includes all of * the data when creating the datasource. *

      *
    • *
    • *

      * complement *

      *

      * The complement parameter instructs Amazon ML to use the data that is not included in the * range of percentBegin to percentEnd to create a datasource. The * complement parameter is useful if you need to create complementary datasources for training * and evaluation. To create a complementary datasource, use the same values for percentBegin * and percentEnd, along with the complement parameter. *

      *

      * For example, the following two datasources do not share any data, and can be used to train and evaluate a * model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

      *

      * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

      *

      * Datasource for training: * {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

      *
    • *
    • *

      * strategy *

      *

      * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

      *

      * The default value for the strategy parameter is sequential, meaning that Amazon * ML takes all of the data records between the percentBegin and percentEnd * parameters for the datasource, in the order that the records appear in the input data. *

      *

      * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

      *

      * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

      *

      * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

      *

      * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd * parameters, set the strategy parameter to random and provide a string that is * used as the seed value for the random data splitting (for example, you can use the S3 path to your data * as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a * pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between * percentBegin and percentEnd. Pseudo-random numbers are assigned using both the * input seed string value and the byte offset as a seed, so changing the data results in a different split. * Any existing ordering is preserved. The random splitting strategy ensures that variables in the training * and evaluation data are distributed similarly. It is useful in the cases where the input data may have an * implicit sort order, which would otherwise result in training and evaluation datasources containing * non-similar data records. *

      *

      * The following two DataRearrangement lines are examples of non-sequentially ordered training * and evaluation datasources: *

      *

      * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

      *

      * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

      *
    • */ public String getDataRearrangement() { return this.dataRearrangement; } /** *

      * A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input data * is used to create the Datasource. *

      *

      * There are multiple parameters that control what data is used to create a datasource: *

      *
        *
      • *

        * percentBegin *

        *

        * Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. * If you do not include percentBegin and percentEnd, Amazon ML includes all of the data * when creating the datasource. *

        *
      • *
      • *

        * percentEnd *

        *

        * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do * not include percentBegin and percentEnd, Amazon ML includes all of the data when * creating the datasource. *

        *
      • *
      • *

        * complement *

        *

        * The complement parameter instructs Amazon ML to use the data that is not included in the range of * percentBegin to percentEnd to create a datasource. The complement * parameter is useful if you need to create complementary datasources for training and evaluation. To create a * complementary datasource, use the same values for percentBegin and percentEnd, along * with the complement parameter. *

        *

        * For example, the following two datasources do not share any data, and can be used to train and evaluate a model. * The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

        *

        * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

        *

        * Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

        *
      • *
      • *

        * strategy *

        *

        * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

        *

        * The default value for the strategy parameter is sequential, meaning that Amazon ML * takes all of the data records between the percentBegin and percentEnd parameters for * the datasource, in the order that the records appear in the input data. *

        *

        * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

        *

        * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

        *

        * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

        *

        * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, * set the strategy parameter to random and provide a string that is used as the seed * value for the random data splitting (for example, you can use the S3 path to your data as the random seed * string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number * between 0 and 100, and then selects the rows that have an assigned number between percentBegin and * percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte * offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The * random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. * It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in * training and evaluation datasources containing non-similar data records. *

        *

        * The following two DataRearrangement lines are examples of non-sequentially ordered training and * evaluation datasources: *

        *

        * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

        *

        * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

        *
      • *
      * * @param dataRearrangement * A JSON string that represents the splitting and rearrangement processing to be applied to a * DataSource. If the DataRearrangement parameter is not provided, all of the input * data is used to create the Datasource.

      *

      * There are multiple parameters that control what data is used to create a datasource: *

      *
        *
      • *

        * percentBegin *

        *

        * Use percentBegin to indicate the beginning of the range of the data used to create the * Datasource. If you do not include percentBegin and percentEnd, Amazon ML * includes all of the data when creating the datasource. *

        *
      • *
      • *

        * percentEnd *

        *

        * Use percentEnd to indicate the end of the range of the data used to create the Datasource. If * you do not include percentBegin and percentEnd, Amazon ML includes all of the * data when creating the datasource. *

        *
      • *
      • *

        * complement *

        *

        * The complement parameter instructs Amazon ML to use the data that is not included in the * range of percentBegin to percentEnd to create a datasource. The * complement parameter is useful if you need to create complementary datasources for training * and evaluation. To create a complementary datasource, use the same values for percentBegin * and percentEnd, along with the complement parameter. *

        *

        * For example, the following two datasources do not share any data, and can be used to train and evaluate a * model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. *

        *

        * Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} *

        *

        * Datasource for training: * {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} *

        *
      • *
      • *

        * strategy *

        *

        * To change how Amazon ML splits the data for a datasource, use the strategy parameter. *

        *

        * The default value for the strategy parameter is sequential, meaning that Amazon * ML takes all of the data records between the percentBegin and percentEnd * parameters for the datasource, in the order that the records appear in the input data. *

        *

        * The following two DataRearrangement lines are examples of sequentially ordered training and * evaluation datasources: *

        *

        * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} *

        *

        * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} *

        *

        * To randomly split the input data into the proportions indicated by the percentBegin and percentEnd * parameters, set the strategy parameter to random and provide a string that is * used as the seed value for the random data splitting (for example, you can use the S3 path to your data as * the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a * pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between * percentBegin and percentEnd. Pseudo-random numbers are assigned using both the * input seed string value and the byte offset as a seed, so changing the data results in a different split. * Any existing ordering is preserved. The random splitting strategy ensures that variables in the training * and evaluation data are distributed similarly. It is useful in the cases where the input data may have an * implicit sort order, which would otherwise result in training and evaluation datasources containing * non-similar data records. *

        *

        * The following two DataRearrangement lines are examples of non-sequentially ordered training * and evaluation datasources: *

        *

        * Datasource for evaluation: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} *

        *

        * Datasource for training: * {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} *

        *
      • * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withDataRearrangement(String dataRearrangement) { setDataRearrangement(dataRearrangement); return this; } /** *

        * A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in the * DataSource. *

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following format to * define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", * "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": * "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": * "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } *

        * * @param dataSchema * A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in * the DataSource.

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following * format to define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": * "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", * "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", * "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } */ public void setDataSchema(String dataSchema) { this.dataSchema = dataSchema; } /** *

        * A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in the * DataSource. *

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following format to * define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", * "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": * "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": * "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } *

        * * @return A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in * the DataSource.

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following * format to define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": * "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", * "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", * "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } */ public String getDataSchema() { return this.dataSchema; } /** *

        * A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in the * DataSource. *

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following format to * define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", * "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": * "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": * "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } *

        * * @param dataSchema * A JSON string that represents the schema for an Amazon Redshift DataSource. The * DataSchema defines the structure of the observation data in the data file(s) referenced in * the DataSource.

        *

        * A DataSchema is not required if you specify a DataSchemaUri. *

        *

        * Define your DataSchema as a series of key-value pairs. attributes and * excludedVariableNames have an array of key-value pairs for their value. Use the following * format to define your DataSchema. *

        *

        * { "version": "1.0", *

        *

        * "recordAnnotationFieldName": "F1", *

        *

        * "recordWeightFieldName": "F2", *

        *

        * "targetFieldName": "F3", *

        *

        * "dataFormat": "CSV", *

        *

        * "dataFileContainsHeader": true, *

        *

        * "attributes": [ *

        *

        * { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": * "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", * "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", * "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], *

        *

        * "excludedVariableNames": [ "F6" ] } * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withDataSchema(String dataSchema) { setDataSchema(dataSchema); return this; } /** *

        * Describes the schema location for an Amazon Redshift DataSource. *

        * * @param dataSchemaUri * Describes the schema location for an Amazon Redshift DataSource. */ public void setDataSchemaUri(String dataSchemaUri) { this.dataSchemaUri = dataSchemaUri; } /** *

        * Describes the schema location for an Amazon Redshift DataSource. *

        * * @return Describes the schema location for an Amazon Redshift DataSource. */ public String getDataSchemaUri() { return this.dataSchemaUri; } /** *

        * Describes the schema location for an Amazon Redshift DataSource. *

        * * @param dataSchemaUri * Describes the schema location for an Amazon Redshift DataSource. * @return Returns a reference to this object so that method calls can be chained together. */ public RedshiftDataSpec withDataSchemaUri(String dataSchemaUri) { setDataSchemaUri(dataSchemaUri); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getDatabaseInformation() != null) sb.append("DatabaseInformation: ").append(getDatabaseInformation()).append(","); if (getSelectSqlQuery() != null) sb.append("SelectSqlQuery: ").append(getSelectSqlQuery()).append(","); if (getDatabaseCredentials() != null) sb.append("DatabaseCredentials: ").append(getDatabaseCredentials()).append(","); if (getS3StagingLocation() != null) sb.append("S3StagingLocation: ").append(getS3StagingLocation()).append(","); if (getDataRearrangement() != null) sb.append("DataRearrangement: ").append(getDataRearrangement()).append(","); if (getDataSchema() != null) sb.append("DataSchema: ").append(getDataSchema()).append(","); if (getDataSchemaUri() != null) sb.append("DataSchemaUri: ").append(getDataSchemaUri()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof RedshiftDataSpec == false) return false; RedshiftDataSpec other = (RedshiftDataSpec) obj; if (other.getDatabaseInformation() == null ^ this.getDatabaseInformation() == null) return false; if (other.getDatabaseInformation() != null && other.getDatabaseInformation().equals(this.getDatabaseInformation()) == false) return false; if (other.getSelectSqlQuery() == null ^ this.getSelectSqlQuery() == null) return false; if (other.getSelectSqlQuery() != null && other.getSelectSqlQuery().equals(this.getSelectSqlQuery()) == false) return false; if (other.getDatabaseCredentials() == null ^ this.getDatabaseCredentials() == null) return false; if (other.getDatabaseCredentials() != null && other.getDatabaseCredentials().equals(this.getDatabaseCredentials()) == false) return false; if (other.getS3StagingLocation() == null ^ this.getS3StagingLocation() == null) return false; if (other.getS3StagingLocation() != null && other.getS3StagingLocation().equals(this.getS3StagingLocation()) == false) return false; if (other.getDataRearrangement() == null ^ this.getDataRearrangement() == null) return false; if (other.getDataRearrangement() != null && other.getDataRearrangement().equals(this.getDataRearrangement()) == false) return false; if (other.getDataSchema() == null ^ this.getDataSchema() == null) return false; if (other.getDataSchema() != null && other.getDataSchema().equals(this.getDataSchema()) == false) return false; if (other.getDataSchemaUri() == null ^ this.getDataSchemaUri() == null) return false; if (other.getDataSchemaUri() != null && other.getDataSchemaUri().equals(this.getDataSchemaUri()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getDatabaseInformation() == null) ? 0 : getDatabaseInformation().hashCode()); hashCode = prime * hashCode + ((getSelectSqlQuery() == null) ? 0 : getSelectSqlQuery().hashCode()); hashCode = prime * hashCode + ((getDatabaseCredentials() == null) ? 0 : getDatabaseCredentials().hashCode()); hashCode = prime * hashCode + ((getS3StagingLocation() == null) ? 0 : getS3StagingLocation().hashCode()); hashCode = prime * hashCode + ((getDataRearrangement() == null) ? 0 : getDataRearrangement().hashCode()); hashCode = prime * hashCode + ((getDataSchema() == null) ? 0 : getDataSchema().hashCode()); hashCode = prime * hashCode + ((getDataSchemaUri() == null) ? 0 : getDataSchemaUri().hashCode()); return hashCode; } @Override public RedshiftDataSpec clone() { try { return (RedshiftDataSpec) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.machinelearning.model.transform.RedshiftDataSpecMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy