All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.UpdateMLModelRequest Maven / Gradle / Ivy

/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class UpdateMLModelRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* The ID assigned to the MLModel during creation. *

*/ private String mLModelId; /** *

* A user-supplied name or description of the MLModel. *

*/ private String mLModelName; /** *

* The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold receive * a negative response from the MLModel, such as false. *

*/ private Float scoreThreshold; /** *

* The ID assigned to the MLModel during creation. *

* * @param mLModelId * The ID assigned to the MLModel during creation. */ public void setMLModelId(String mLModelId) { this.mLModelId = mLModelId; } /** *

* The ID assigned to the MLModel during creation. *

* * @return The ID assigned to the MLModel during creation. */ public String getMLModelId() { return this.mLModelId; } /** *

* The ID assigned to the MLModel during creation. *

* * @param mLModelId * The ID assigned to the MLModel during creation. * @return Returns a reference to this object so that method calls can be chained together. */ public UpdateMLModelRequest withMLModelId(String mLModelId) { setMLModelId(mLModelId); return this; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. */ public void setMLModelName(String mLModelName) { this.mLModelName = mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String getMLModelName() { return this.mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ public UpdateMLModelRequest withMLModelName(String mLModelName) { setMLModelName(mLModelName); return this; } /** *

* The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold receive * a negative response from the MLModel, such as false. *

* * @param scoreThreshold * The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction.

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold * receive a negative response from the MLModel, such as false. */ public void setScoreThreshold(Float scoreThreshold) { this.scoreThreshold = scoreThreshold; } /** *

* The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold receive * a negative response from the MLModel, such as false. *

* * @return The ScoreThreshold used in binary classification MLModel that marks the * boundary between a positive prediction and a negative prediction.

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold * receive a negative response from the MLModel, such as false. */ public Float getScoreThreshold() { return this.scoreThreshold; } /** *

* The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold receive * a negative response from the MLModel, such as false. *

* * @param scoreThreshold * The ScoreThreshold used in binary classification MLModel that marks the boundary * between a positive prediction and a negative prediction.

*

* Output values greater than or equal to the ScoreThreshold receive a positive result from the * MLModel, such as true. Output values less than the ScoreThreshold * receive a negative response from the MLModel, such as false. * @return Returns a reference to this object so that method calls can be chained together. */ public UpdateMLModelRequest withScoreThreshold(Float scoreThreshold) { setScoreThreshold(scoreThreshold); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMLModelId() != null) sb.append("MLModelId: ").append(getMLModelId()).append(","); if (getMLModelName() != null) sb.append("MLModelName: ").append(getMLModelName()).append(","); if (getScoreThreshold() != null) sb.append("ScoreThreshold: ").append(getScoreThreshold()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof UpdateMLModelRequest == false) return false; UpdateMLModelRequest other = (UpdateMLModelRequest) obj; if (other.getMLModelId() == null ^ this.getMLModelId() == null) return false; if (other.getMLModelId() != null && other.getMLModelId().equals(this.getMLModelId()) == false) return false; if (other.getMLModelName() == null ^ this.getMLModelName() == null) return false; if (other.getMLModelName() != null && other.getMLModelName().equals(this.getMLModelName()) == false) return false; if (other.getScoreThreshold() == null ^ this.getScoreThreshold() == null) return false; if (other.getScoreThreshold() != null && other.getScoreThreshold().equals(this.getScoreThreshold()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode()); hashCode = prime * hashCode + ((getMLModelName() == null) ? 0 : getMLModelName().hashCode()); hashCode = prime * hashCode + ((getScoreThreshold() == null) ? 0 : getScoreThreshold().hashCode()); return hashCode; } @Override public UpdateMLModelRequest clone() { return (UpdateMLModelRequest) super.clone(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy