All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.neptunedata.model.StartMLModelTrainingJobRequest Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon NeptuneData module holds the client classes that are used for communicating with Amazon NeptuneData Service

There is a newer version: 1.12.772
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.neptunedata.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class StartMLModelTrainingJobRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* A unique identifier for the new job. The default is An autogenerated UUID. *

*/ private String id; /** *

* The job ID of a completed model-training job that you want to update incrementally based on updated data. *

*/ private String previousModelTrainingJobId; /** *

* The job ID of the completed data-processing job that has created the data that the training will work with. *

*/ private String dataProcessingJobId; /** *

* The location in Amazon S3 where the model artifacts are to be stored. *

*/ private String trainModelS3Location; /** *

* The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error * will occur. *

*/ private String sagemakerIamRoleArn; /** *

* The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in * your DB cluster parameter group or an error will occur. *

*/ private String neptuneIamRoleArn; /** *

* The type of ML instance used in preparing and managing training of ML models. This is a CPU instance chosen based * on memory requirements for processing the training data and model. *

*/ private String baseProcessingInstanceType; /** *

* The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU training. * The default is ml.p3.2xlarge. Choosing the right instance type for training depends on the task * type, graph size, and your budget. *

*/ private String trainingInstanceType; /** *

* The disk volume size of the training instance. Both input data and the output model are stored on disk, so the * volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, Neptune ML * selects a disk volume size based on the recommendation generated in the data processing step. *

*/ private Integer trainingInstanceVolumeSizeInGB; /** *

* Timeout in seconds for the training job. The default is 86,400 (1 day). *

*/ private Integer trainingTimeOutInSeconds; /** *

* Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. Neptune ML * automatically tunes the hyperparameters of the machine learning model. To obtain a model that performs well, use * at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the more tuning * runs, the better the results. *

*/ private Integer maxHPONumberOfTrainingJobs; /** *

* Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The number * of parallel jobs you can run is limited by the available resources on your training instance. *

*/ private Integer maxHPOParallelTrainingJobs; /** *

* The IDs of the subnets in the Neptune VPC. The default is None. *

*/ private java.util.List subnets; /** *

* The VPC security group IDs. The default is None. *

*/ private java.util.List securityGroupIds; /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to * the ML compute instances that run the training job. The default is None. *

*/ private String volumeEncryptionKMSKey; /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The * default is none. *

*/ private String s3OutputEncryptionKMSKey; /** *

* Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The * default is False. *

*/ private Boolean enableManagedSpotTraining; /** *

* The configuration for custom model training. This is a JSON object. *

*/ private CustomModelTrainingParameters customModelTrainingParameters; /** *

* A unique identifier for the new job. The default is An autogenerated UUID. *

* * @param id * A unique identifier for the new job. The default is An autogenerated UUID. */ public void setId(String id) { this.id = id; } /** *

* A unique identifier for the new job. The default is An autogenerated UUID. *

* * @return A unique identifier for the new job. The default is An autogenerated UUID. */ public String getId() { return this.id; } /** *

* A unique identifier for the new job. The default is An autogenerated UUID. *

* * @param id * A unique identifier for the new job. The default is An autogenerated UUID. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withId(String id) { setId(id); return this; } /** *

* The job ID of a completed model-training job that you want to update incrementally based on updated data. *

* * @param previousModelTrainingJobId * The job ID of a completed model-training job that you want to update incrementally based on updated data. */ public void setPreviousModelTrainingJobId(String previousModelTrainingJobId) { this.previousModelTrainingJobId = previousModelTrainingJobId; } /** *

* The job ID of a completed model-training job that you want to update incrementally based on updated data. *

* * @return The job ID of a completed model-training job that you want to update incrementally based on updated data. */ public String getPreviousModelTrainingJobId() { return this.previousModelTrainingJobId; } /** *

* The job ID of a completed model-training job that you want to update incrementally based on updated data. *

* * @param previousModelTrainingJobId * The job ID of a completed model-training job that you want to update incrementally based on updated data. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withPreviousModelTrainingJobId(String previousModelTrainingJobId) { setPreviousModelTrainingJobId(previousModelTrainingJobId); return this; } /** *

* The job ID of the completed data-processing job that has created the data that the training will work with. *

* * @param dataProcessingJobId * The job ID of the completed data-processing job that has created the data that the training will work * with. */ public void setDataProcessingJobId(String dataProcessingJobId) { this.dataProcessingJobId = dataProcessingJobId; } /** *

* The job ID of the completed data-processing job that has created the data that the training will work with. *

* * @return The job ID of the completed data-processing job that has created the data that the training will work * with. */ public String getDataProcessingJobId() { return this.dataProcessingJobId; } /** *

* The job ID of the completed data-processing job that has created the data that the training will work with. *

* * @param dataProcessingJobId * The job ID of the completed data-processing job that has created the data that the training will work * with. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withDataProcessingJobId(String dataProcessingJobId) { setDataProcessingJobId(dataProcessingJobId); return this; } /** *

* The location in Amazon S3 where the model artifacts are to be stored. *

* * @param trainModelS3Location * The location in Amazon S3 where the model artifacts are to be stored. */ public void setTrainModelS3Location(String trainModelS3Location) { this.trainModelS3Location = trainModelS3Location; } /** *

* The location in Amazon S3 where the model artifacts are to be stored. *

* * @return The location in Amazon S3 where the model artifacts are to be stored. */ public String getTrainModelS3Location() { return this.trainModelS3Location; } /** *

* The location in Amazon S3 where the model artifacts are to be stored. *

* * @param trainModelS3Location * The location in Amazon S3 where the model artifacts are to be stored. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withTrainModelS3Location(String trainModelS3Location) { setTrainModelS3Location(trainModelS3Location); return this; } /** *

* The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error * will occur. *

* * @param sagemakerIamRoleArn * The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or * an error will occur. */ public void setSagemakerIamRoleArn(String sagemakerIamRoleArn) { this.sagemakerIamRoleArn = sagemakerIamRoleArn; } /** *

* The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error * will occur. *

* * @return The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or * an error will occur. */ public String getSagemakerIamRoleArn() { return this.sagemakerIamRoleArn; } /** *

* The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error * will occur. *

* * @param sagemakerIamRoleArn * The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or * an error will occur. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withSagemakerIamRoleArn(String sagemakerIamRoleArn) { setSagemakerIamRoleArn(sagemakerIamRoleArn); return this; } /** *

* The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in * your DB cluster parameter group or an error will occur. *

* * @param neptuneIamRoleArn * The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be * listed in your DB cluster parameter group or an error will occur. */ public void setNeptuneIamRoleArn(String neptuneIamRoleArn) { this.neptuneIamRoleArn = neptuneIamRoleArn; } /** *

* The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in * your DB cluster parameter group or an error will occur. *

* * @return The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be * listed in your DB cluster parameter group or an error will occur. */ public String getNeptuneIamRoleArn() { return this.neptuneIamRoleArn; } /** *

* The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in * your DB cluster parameter group or an error will occur. *

* * @param neptuneIamRoleArn * The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be * listed in your DB cluster parameter group or an error will occur. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withNeptuneIamRoleArn(String neptuneIamRoleArn) { setNeptuneIamRoleArn(neptuneIamRoleArn); return this; } /** *

* The type of ML instance used in preparing and managing training of ML models. This is a CPU instance chosen based * on memory requirements for processing the training data and model. *

* * @param baseProcessingInstanceType * The type of ML instance used in preparing and managing training of ML models. This is a CPU instance * chosen based on memory requirements for processing the training data and model. */ public void setBaseProcessingInstanceType(String baseProcessingInstanceType) { this.baseProcessingInstanceType = baseProcessingInstanceType; } /** *

* The type of ML instance used in preparing and managing training of ML models. This is a CPU instance chosen based * on memory requirements for processing the training data and model. *

* * @return The type of ML instance used in preparing and managing training of ML models. This is a CPU instance * chosen based on memory requirements for processing the training data and model. */ public String getBaseProcessingInstanceType() { return this.baseProcessingInstanceType; } /** *

* The type of ML instance used in preparing and managing training of ML models. This is a CPU instance chosen based * on memory requirements for processing the training data and model. *

* * @param baseProcessingInstanceType * The type of ML instance used in preparing and managing training of ML models. This is a CPU instance * chosen based on memory requirements for processing the training data and model. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withBaseProcessingInstanceType(String baseProcessingInstanceType) { setBaseProcessingInstanceType(baseProcessingInstanceType); return this; } /** *

* The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU training. * The default is ml.p3.2xlarge. Choosing the right instance type for training depends on the task * type, graph size, and your budget. *

* * @param trainingInstanceType * The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU * training. The default is ml.p3.2xlarge. Choosing the right instance type for training depends * on the task type, graph size, and your budget. */ public void setTrainingInstanceType(String trainingInstanceType) { this.trainingInstanceType = trainingInstanceType; } /** *

* The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU training. * The default is ml.p3.2xlarge. Choosing the right instance type for training depends on the task * type, graph size, and your budget. *

* * @return The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU * training. The default is ml.p3.2xlarge. Choosing the right instance type for training * depends on the task type, graph size, and your budget. */ public String getTrainingInstanceType() { return this.trainingInstanceType; } /** *

* The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU training. * The default is ml.p3.2xlarge. Choosing the right instance type for training depends on the task * type, graph size, and your budget. *

* * @param trainingInstanceType * The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU * training. The default is ml.p3.2xlarge. Choosing the right instance type for training depends * on the task type, graph size, and your budget. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withTrainingInstanceType(String trainingInstanceType) { setTrainingInstanceType(trainingInstanceType); return this; } /** *

* The disk volume size of the training instance. Both input data and the output model are stored on disk, so the * volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, Neptune ML * selects a disk volume size based on the recommendation generated in the data processing step. *

* * @param trainingInstanceVolumeSizeInGB * The disk volume size of the training instance. Both input data and the output model are stored on disk, so * the volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, * Neptune ML selects a disk volume size based on the recommendation generated in the data processing step. */ public void setTrainingInstanceVolumeSizeInGB(Integer trainingInstanceVolumeSizeInGB) { this.trainingInstanceVolumeSizeInGB = trainingInstanceVolumeSizeInGB; } /** *

* The disk volume size of the training instance. Both input data and the output model are stored on disk, so the * volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, Neptune ML * selects a disk volume size based on the recommendation generated in the data processing step. *

* * @return The disk volume size of the training instance. Both input data and the output model are stored on disk, * so the volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, * Neptune ML selects a disk volume size based on the recommendation generated in the data processing step. */ public Integer getTrainingInstanceVolumeSizeInGB() { return this.trainingInstanceVolumeSizeInGB; } /** *

* The disk volume size of the training instance. Both input data and the output model are stored on disk, so the * volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, Neptune ML * selects a disk volume size based on the recommendation generated in the data processing step. *

* * @param trainingInstanceVolumeSizeInGB * The disk volume size of the training instance. Both input data and the output model are stored on disk, so * the volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, * Neptune ML selects a disk volume size based on the recommendation generated in the data processing step. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withTrainingInstanceVolumeSizeInGB(Integer trainingInstanceVolumeSizeInGB) { setTrainingInstanceVolumeSizeInGB(trainingInstanceVolumeSizeInGB); return this; } /** *

* Timeout in seconds for the training job. The default is 86,400 (1 day). *

* * @param trainingTimeOutInSeconds * Timeout in seconds for the training job. The default is 86,400 (1 day). */ public void setTrainingTimeOutInSeconds(Integer trainingTimeOutInSeconds) { this.trainingTimeOutInSeconds = trainingTimeOutInSeconds; } /** *

* Timeout in seconds for the training job. The default is 86,400 (1 day). *

* * @return Timeout in seconds for the training job. The default is 86,400 (1 day). */ public Integer getTrainingTimeOutInSeconds() { return this.trainingTimeOutInSeconds; } /** *

* Timeout in seconds for the training job. The default is 86,400 (1 day). *

* * @param trainingTimeOutInSeconds * Timeout in seconds for the training job. The default is 86,400 (1 day). * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withTrainingTimeOutInSeconds(Integer trainingTimeOutInSeconds) { setTrainingTimeOutInSeconds(trainingTimeOutInSeconds); return this; } /** *

* Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. Neptune ML * automatically tunes the hyperparameters of the machine learning model. To obtain a model that performs well, use * at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the more tuning * runs, the better the results. *

* * @param maxHPONumberOfTrainingJobs * Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. * Neptune ML automatically tunes the hyperparameters of the machine learning model. To obtain a model that * performs well, use at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). * In general, the more tuning runs, the better the results. */ public void setMaxHPONumberOfTrainingJobs(Integer maxHPONumberOfTrainingJobs) { this.maxHPONumberOfTrainingJobs = maxHPONumberOfTrainingJobs; } /** *

* Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. Neptune ML * automatically tunes the hyperparameters of the machine learning model. To obtain a model that performs well, use * at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the more tuning * runs, the better the results. *

* * @return Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. * Neptune ML automatically tunes the hyperparameters of the machine learning model. To obtain a model that * performs well, use at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). * In general, the more tuning runs, the better the results. */ public Integer getMaxHPONumberOfTrainingJobs() { return this.maxHPONumberOfTrainingJobs; } /** *

* Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. Neptune ML * automatically tunes the hyperparameters of the machine learning model. To obtain a model that performs well, use * at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the more tuning * runs, the better the results. *

* * @param maxHPONumberOfTrainingJobs * Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. * Neptune ML automatically tunes the hyperparameters of the machine learning model. To obtain a model that * performs well, use at least 10 jobs (in other words, set maxHPONumberOfTrainingJobs to 10). * In general, the more tuning runs, the better the results. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withMaxHPONumberOfTrainingJobs(Integer maxHPONumberOfTrainingJobs) { setMaxHPONumberOfTrainingJobs(maxHPONumberOfTrainingJobs); return this; } /** *

* Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The number * of parallel jobs you can run is limited by the available resources on your training instance. *

* * @param maxHPOParallelTrainingJobs * Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The * number of parallel jobs you can run is limited by the available resources on your training instance. */ public void setMaxHPOParallelTrainingJobs(Integer maxHPOParallelTrainingJobs) { this.maxHPOParallelTrainingJobs = maxHPOParallelTrainingJobs; } /** *

* Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The number * of parallel jobs you can run is limited by the available resources on your training instance. *

* * @return Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. * The number of parallel jobs you can run is limited by the available resources on your training instance. */ public Integer getMaxHPOParallelTrainingJobs() { return this.maxHPOParallelTrainingJobs; } /** *

* Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The number * of parallel jobs you can run is limited by the available resources on your training instance. *

* * @param maxHPOParallelTrainingJobs * Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The * number of parallel jobs you can run is limited by the available resources on your training instance. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withMaxHPOParallelTrainingJobs(Integer maxHPOParallelTrainingJobs) { setMaxHPOParallelTrainingJobs(maxHPOParallelTrainingJobs); return this; } /** *

* The IDs of the subnets in the Neptune VPC. The default is None. *

* * @return The IDs of the subnets in the Neptune VPC. The default is None. */ public java.util.List getSubnets() { return subnets; } /** *

* The IDs of the subnets in the Neptune VPC. The default is None. *

* * @param subnets * The IDs of the subnets in the Neptune VPC. The default is None. */ public void setSubnets(java.util.Collection subnets) { if (subnets == null) { this.subnets = null; return; } this.subnets = new java.util.ArrayList(subnets); } /** *

* The IDs of the subnets in the Neptune VPC. The default is None. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setSubnets(java.util.Collection)} or {@link #withSubnets(java.util.Collection)} if you want to override * the existing values. *

* * @param subnets * The IDs of the subnets in the Neptune VPC. The default is None. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withSubnets(String... subnets) { if (this.subnets == null) { setSubnets(new java.util.ArrayList(subnets.length)); } for (String ele : subnets) { this.subnets.add(ele); } return this; } /** *

* The IDs of the subnets in the Neptune VPC. The default is None. *

* * @param subnets * The IDs of the subnets in the Neptune VPC. The default is None. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withSubnets(java.util.Collection subnets) { setSubnets(subnets); return this; } /** *

* The VPC security group IDs. The default is None. *

* * @return The VPC security group IDs. The default is None. */ public java.util.List getSecurityGroupIds() { return securityGroupIds; } /** *

* The VPC security group IDs. The default is None. *

* * @param securityGroupIds * The VPC security group IDs. The default is None. */ public void setSecurityGroupIds(java.util.Collection securityGroupIds) { if (securityGroupIds == null) { this.securityGroupIds = null; return; } this.securityGroupIds = new java.util.ArrayList(securityGroupIds); } /** *

* The VPC security group IDs. The default is None. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setSecurityGroupIds(java.util.Collection)} or {@link #withSecurityGroupIds(java.util.Collection)} if you * want to override the existing values. *

* * @param securityGroupIds * The VPC security group IDs. The default is None. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withSecurityGroupIds(String... securityGroupIds) { if (this.securityGroupIds == null) { setSecurityGroupIds(new java.util.ArrayList(securityGroupIds.length)); } for (String ele : securityGroupIds) { this.securityGroupIds.add(ele); } return this; } /** *

* The VPC security group IDs. The default is None. *

* * @param securityGroupIds * The VPC security group IDs. The default is None. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withSecurityGroupIds(java.util.Collection securityGroupIds) { setSecurityGroupIds(securityGroupIds); return this; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to * the ML compute instances that run the training job. The default is None. *

* * @param volumeEncryptionKMSKey * The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume * attached to the ML compute instances that run the training job. The default is None. */ public void setVolumeEncryptionKMSKey(String volumeEncryptionKMSKey) { this.volumeEncryptionKMSKey = volumeEncryptionKMSKey; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to * the ML compute instances that run the training job. The default is None. *

* * @return The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume * attached to the ML compute instances that run the training job. The default is None. */ public String getVolumeEncryptionKMSKey() { return this.volumeEncryptionKMSKey; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to * the ML compute instances that run the training job. The default is None. *

* * @param volumeEncryptionKMSKey * The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume * attached to the ML compute instances that run the training job. The default is None. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withVolumeEncryptionKMSKey(String volumeEncryptionKMSKey) { setVolumeEncryptionKMSKey(volumeEncryptionKMSKey); return this; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The * default is none. *

* * @param s3OutputEncryptionKMSKey * The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing * job. The default is none. */ public void setS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey) { this.s3OutputEncryptionKMSKey = s3OutputEncryptionKMSKey; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The * default is none. *

* * @return The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing * job. The default is none. */ public String getS3OutputEncryptionKMSKey() { return this.s3OutputEncryptionKMSKey; } /** *

* The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The * default is none. *

* * @param s3OutputEncryptionKMSKey * The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing * job. The default is none. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey) { setS3OutputEncryptionKMSKey(s3OutputEncryptionKMSKey); return this; } /** *

* Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The * default is False. *

* * @param enableManagedSpotTraining * Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot * instances. The default is False. */ public void setEnableManagedSpotTraining(Boolean enableManagedSpotTraining) { this.enableManagedSpotTraining = enableManagedSpotTraining; } /** *

* Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The * default is False. *

* * @return Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot * instances. The default is False. */ public Boolean getEnableManagedSpotTraining() { return this.enableManagedSpotTraining; } /** *

* Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The * default is False. *

* * @param enableManagedSpotTraining * Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot * instances. The default is False. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withEnableManagedSpotTraining(Boolean enableManagedSpotTraining) { setEnableManagedSpotTraining(enableManagedSpotTraining); return this; } /** *

* Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The * default is False. *

* * @return Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot * instances. The default is False. */ public Boolean isEnableManagedSpotTraining() { return this.enableManagedSpotTraining; } /** *

* The configuration for custom model training. This is a JSON object. *

* * @param customModelTrainingParameters * The configuration for custom model training. This is a JSON object. */ public void setCustomModelTrainingParameters(CustomModelTrainingParameters customModelTrainingParameters) { this.customModelTrainingParameters = customModelTrainingParameters; } /** *

* The configuration for custom model training. This is a JSON object. *

* * @return The configuration for custom model training. This is a JSON object. */ public CustomModelTrainingParameters getCustomModelTrainingParameters() { return this.customModelTrainingParameters; } /** *

* The configuration for custom model training. This is a JSON object. *

* * @param customModelTrainingParameters * The configuration for custom model training. This is a JSON object. * @return Returns a reference to this object so that method calls can be chained together. */ public StartMLModelTrainingJobRequest withCustomModelTrainingParameters(CustomModelTrainingParameters customModelTrainingParameters) { setCustomModelTrainingParameters(customModelTrainingParameters); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getId() != null) sb.append("Id: ").append(getId()).append(","); if (getPreviousModelTrainingJobId() != null) sb.append("PreviousModelTrainingJobId: ").append(getPreviousModelTrainingJobId()).append(","); if (getDataProcessingJobId() != null) sb.append("DataProcessingJobId: ").append(getDataProcessingJobId()).append(","); if (getTrainModelS3Location() != null) sb.append("TrainModelS3Location: ").append(getTrainModelS3Location()).append(","); if (getSagemakerIamRoleArn() != null) sb.append("SagemakerIamRoleArn: ").append(getSagemakerIamRoleArn()).append(","); if (getNeptuneIamRoleArn() != null) sb.append("NeptuneIamRoleArn: ").append(getNeptuneIamRoleArn()).append(","); if (getBaseProcessingInstanceType() != null) sb.append("BaseProcessingInstanceType: ").append(getBaseProcessingInstanceType()).append(","); if (getTrainingInstanceType() != null) sb.append("TrainingInstanceType: ").append(getTrainingInstanceType()).append(","); if (getTrainingInstanceVolumeSizeInGB() != null) sb.append("TrainingInstanceVolumeSizeInGB: ").append(getTrainingInstanceVolumeSizeInGB()).append(","); if (getTrainingTimeOutInSeconds() != null) sb.append("TrainingTimeOutInSeconds: ").append(getTrainingTimeOutInSeconds()).append(","); if (getMaxHPONumberOfTrainingJobs() != null) sb.append("MaxHPONumberOfTrainingJobs: ").append(getMaxHPONumberOfTrainingJobs()).append(","); if (getMaxHPOParallelTrainingJobs() != null) sb.append("MaxHPOParallelTrainingJobs: ").append(getMaxHPOParallelTrainingJobs()).append(","); if (getSubnets() != null) sb.append("Subnets: ").append(getSubnets()).append(","); if (getSecurityGroupIds() != null) sb.append("SecurityGroupIds: ").append(getSecurityGroupIds()).append(","); if (getVolumeEncryptionKMSKey() != null) sb.append("VolumeEncryptionKMSKey: ").append(getVolumeEncryptionKMSKey()).append(","); if (getS3OutputEncryptionKMSKey() != null) sb.append("S3OutputEncryptionKMSKey: ").append(getS3OutputEncryptionKMSKey()).append(","); if (getEnableManagedSpotTraining() != null) sb.append("EnableManagedSpotTraining: ").append(getEnableManagedSpotTraining()).append(","); if (getCustomModelTrainingParameters() != null) sb.append("CustomModelTrainingParameters: ").append(getCustomModelTrainingParameters()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof StartMLModelTrainingJobRequest == false) return false; StartMLModelTrainingJobRequest other = (StartMLModelTrainingJobRequest) obj; if (other.getId() == null ^ this.getId() == null) return false; if (other.getId() != null && other.getId().equals(this.getId()) == false) return false; if (other.getPreviousModelTrainingJobId() == null ^ this.getPreviousModelTrainingJobId() == null) return false; if (other.getPreviousModelTrainingJobId() != null && other.getPreviousModelTrainingJobId().equals(this.getPreviousModelTrainingJobId()) == false) return false; if (other.getDataProcessingJobId() == null ^ this.getDataProcessingJobId() == null) return false; if (other.getDataProcessingJobId() != null && other.getDataProcessingJobId().equals(this.getDataProcessingJobId()) == false) return false; if (other.getTrainModelS3Location() == null ^ this.getTrainModelS3Location() == null) return false; if (other.getTrainModelS3Location() != null && other.getTrainModelS3Location().equals(this.getTrainModelS3Location()) == false) return false; if (other.getSagemakerIamRoleArn() == null ^ this.getSagemakerIamRoleArn() == null) return false; if (other.getSagemakerIamRoleArn() != null && other.getSagemakerIamRoleArn().equals(this.getSagemakerIamRoleArn()) == false) return false; if (other.getNeptuneIamRoleArn() == null ^ this.getNeptuneIamRoleArn() == null) return false; if (other.getNeptuneIamRoleArn() != null && other.getNeptuneIamRoleArn().equals(this.getNeptuneIamRoleArn()) == false) return false; if (other.getBaseProcessingInstanceType() == null ^ this.getBaseProcessingInstanceType() == null) return false; if (other.getBaseProcessingInstanceType() != null && other.getBaseProcessingInstanceType().equals(this.getBaseProcessingInstanceType()) == false) return false; if (other.getTrainingInstanceType() == null ^ this.getTrainingInstanceType() == null) return false; if (other.getTrainingInstanceType() != null && other.getTrainingInstanceType().equals(this.getTrainingInstanceType()) == false) return false; if (other.getTrainingInstanceVolumeSizeInGB() == null ^ this.getTrainingInstanceVolumeSizeInGB() == null) return false; if (other.getTrainingInstanceVolumeSizeInGB() != null && other.getTrainingInstanceVolumeSizeInGB().equals(this.getTrainingInstanceVolumeSizeInGB()) == false) return false; if (other.getTrainingTimeOutInSeconds() == null ^ this.getTrainingTimeOutInSeconds() == null) return false; if (other.getTrainingTimeOutInSeconds() != null && other.getTrainingTimeOutInSeconds().equals(this.getTrainingTimeOutInSeconds()) == false) return false; if (other.getMaxHPONumberOfTrainingJobs() == null ^ this.getMaxHPONumberOfTrainingJobs() == null) return false; if (other.getMaxHPONumberOfTrainingJobs() != null && other.getMaxHPONumberOfTrainingJobs().equals(this.getMaxHPONumberOfTrainingJobs()) == false) return false; if (other.getMaxHPOParallelTrainingJobs() == null ^ this.getMaxHPOParallelTrainingJobs() == null) return false; if (other.getMaxHPOParallelTrainingJobs() != null && other.getMaxHPOParallelTrainingJobs().equals(this.getMaxHPOParallelTrainingJobs()) == false) return false; if (other.getSubnets() == null ^ this.getSubnets() == null) return false; if (other.getSubnets() != null && other.getSubnets().equals(this.getSubnets()) == false) return false; if (other.getSecurityGroupIds() == null ^ this.getSecurityGroupIds() == null) return false; if (other.getSecurityGroupIds() != null && other.getSecurityGroupIds().equals(this.getSecurityGroupIds()) == false) return false; if (other.getVolumeEncryptionKMSKey() == null ^ this.getVolumeEncryptionKMSKey() == null) return false; if (other.getVolumeEncryptionKMSKey() != null && other.getVolumeEncryptionKMSKey().equals(this.getVolumeEncryptionKMSKey()) == false) return false; if (other.getS3OutputEncryptionKMSKey() == null ^ this.getS3OutputEncryptionKMSKey() == null) return false; if (other.getS3OutputEncryptionKMSKey() != null && other.getS3OutputEncryptionKMSKey().equals(this.getS3OutputEncryptionKMSKey()) == false) return false; if (other.getEnableManagedSpotTraining() == null ^ this.getEnableManagedSpotTraining() == null) return false; if (other.getEnableManagedSpotTraining() != null && other.getEnableManagedSpotTraining().equals(this.getEnableManagedSpotTraining()) == false) return false; if (other.getCustomModelTrainingParameters() == null ^ this.getCustomModelTrainingParameters() == null) return false; if (other.getCustomModelTrainingParameters() != null && other.getCustomModelTrainingParameters().equals(this.getCustomModelTrainingParameters()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getId() == null) ? 0 : getId().hashCode()); hashCode = prime * hashCode + ((getPreviousModelTrainingJobId() == null) ? 0 : getPreviousModelTrainingJobId().hashCode()); hashCode = prime * hashCode + ((getDataProcessingJobId() == null) ? 0 : getDataProcessingJobId().hashCode()); hashCode = prime * hashCode + ((getTrainModelS3Location() == null) ? 0 : getTrainModelS3Location().hashCode()); hashCode = prime * hashCode + ((getSagemakerIamRoleArn() == null) ? 0 : getSagemakerIamRoleArn().hashCode()); hashCode = prime * hashCode + ((getNeptuneIamRoleArn() == null) ? 0 : getNeptuneIamRoleArn().hashCode()); hashCode = prime * hashCode + ((getBaseProcessingInstanceType() == null) ? 0 : getBaseProcessingInstanceType().hashCode()); hashCode = prime * hashCode + ((getTrainingInstanceType() == null) ? 0 : getTrainingInstanceType().hashCode()); hashCode = prime * hashCode + ((getTrainingInstanceVolumeSizeInGB() == null) ? 0 : getTrainingInstanceVolumeSizeInGB().hashCode()); hashCode = prime * hashCode + ((getTrainingTimeOutInSeconds() == null) ? 0 : getTrainingTimeOutInSeconds().hashCode()); hashCode = prime * hashCode + ((getMaxHPONumberOfTrainingJobs() == null) ? 0 : getMaxHPONumberOfTrainingJobs().hashCode()); hashCode = prime * hashCode + ((getMaxHPOParallelTrainingJobs() == null) ? 0 : getMaxHPOParallelTrainingJobs().hashCode()); hashCode = prime * hashCode + ((getSubnets() == null) ? 0 : getSubnets().hashCode()); hashCode = prime * hashCode + ((getSecurityGroupIds() == null) ? 0 : getSecurityGroupIds().hashCode()); hashCode = prime * hashCode + ((getVolumeEncryptionKMSKey() == null) ? 0 : getVolumeEncryptionKMSKey().hashCode()); hashCode = prime * hashCode + ((getS3OutputEncryptionKMSKey() == null) ? 0 : getS3OutputEncryptionKMSKey().hashCode()); hashCode = prime * hashCode + ((getEnableManagedSpotTraining() == null) ? 0 : getEnableManagedSpotTraining().hashCode()); hashCode = prime * hashCode + ((getCustomModelTrainingParameters() == null) ? 0 : getCustomModelTrainingParameters().hashCode()); return hashCode; } @Override public StartMLModelTrainingJobRequest clone() { return (StartMLModelTrainingJobRequest) super.clone(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy