All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.CreateMLModelRequest Maven / Gradle / Ivy

Go to download

The AWS SDK for Java with support for OSGi. The AWS SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).

There is a newer version: 1.11.60
Show newest version
/*
 * Copyright 2011-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not
 * use this file except in compliance with the License. A copy of the License is
 * located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on
 * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;
import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 */
public class CreateMLModelRequest extends AmazonWebServiceRequest implements
        Serializable, Cloneable {

    /**
     * 

* A user-supplied ID that uniquely identifies the MLModel. *

*/ private String mLModelId; /** *

* A user-supplied name or description of the MLModel. *

*/ private String mLModelName; /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

*/ private String mLModelType; /** *

* A list of the training parameters in the MLModel. The list * is implemented as a map of key-value pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

    *

    * The value is an integer that ranges from 100000 to * 2147483648. The default value is 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the training * process traverses the observations to build the MLModel. The * value is an integer that ranges from 1 to 10000 * . The default value is 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the training * data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are * auto and none. The default value is * none. We strongly recommend that you shuffle your * data. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient regularization * L1 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to zero, resulting in a * sparse feature set. If you use this parameter, start by specifying a * small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 normalization. This * parameter can't be used when L2 is specified. Use this * parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient regularization * L2 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to small, nonzero values. * If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 normalization. This * parameter can't be used when L1 is specified. Use this * parameter sparingly. *

    *
  • *
*/ private com.amazonaws.internal.SdkInternalMap parameters; /** *

* The DataSource that points to the training data. *

*/ private String trainingDataSourceId; /** *

* The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, * Amazon ML creates a default. *

*/ private String recipe; /** *

* The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

*/ private String recipeUri; /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @param mLModelId * A user-supplied ID that uniquely identifies the * MLModel. */ public void setMLModelId(String mLModelId) { this.mLModelId = mLModelId; } /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @return A user-supplied ID that uniquely identifies the * MLModel. */ public String getMLModelId() { return this.mLModelId; } /** *

* A user-supplied ID that uniquely identifies the MLModel. *

* * @param mLModelId * A user-supplied ID that uniquely identifies the * MLModel. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withMLModelId(String mLModelId) { setMLModelId(mLModelId); return this; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. */ public void setMLModelName(String mLModelName) { this.mLModelName = mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String getMLModelName() { return this.mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withMLModelName(String mLModelName) { setMLModelName(mLModelName); return this; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public void setMLModelType(String mLModelType) { this.mLModelType = mLModelType; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @return The category of supervised learning that this * MLModel will address. Choose from the following * types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public String getMLModelType() { return this.mLModelType; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @return Returns a reference to this object so that method calls can be * chained together. * @see MLModelType */ public CreateMLModelRequest withMLModelType(String mLModelType) { setMLModelType(mLModelType); return this; } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @see MLModelType */ public void setMLModelType(MLModelType mLModelType) { this.mLModelType = mLModelType.toString(); } /** *

* The category of supervised learning that this MLModel will * address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be * used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two * possible values.
  • *
  • Choose MULTICLASS if the MLModel result has * a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. *

* * @param mLModelType * The category of supervised learning that this MLModel * will address. Choose from the following types:

*
    *
  • Choose REGRESSION if the MLModel * will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result * has two possible values.
  • *
  • Choose MULTICLASS if the MLModel * result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine Learning Developer Guide. * @return Returns a reference to this object so that method calls can be * chained together. * @see MLModelType */ public CreateMLModelRequest withMLModelType(MLModelType mLModelType) { setMLModelType(mLModelType); return this; } /** *

* A list of the training parameters in the MLModel. The list * is implemented as a map of key-value pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

    *

    * The value is an integer that ranges from 100000 to * 2147483648. The default value is 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the training * process traverses the observations to build the MLModel. The * value is an integer that ranges from 1 to 10000 * . The default value is 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the training * data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are * auto and none. The default value is * none. We strongly recommend that you shuffle your * data. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient regularization * L1 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to zero, resulting in a * sparse feature set. If you use this parameter, start by specifying a * small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 normalization. This * parameter can't be used when L2 is specified. Use this * parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient regularization * L2 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to small, nonzero values. * If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 normalization. This * parameter can't be used when L1 is specified. Use this * parameter sparingly. *

    *
  • *
* * @return A list of the training parameters in the MLModel. * The list is implemented as a map of key-value pairs.

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size * of the model. Depending on the input data, the size of the model * might affect its performance. *

    *

    * The value is an integer that ranges from 100000 to * 2147483648. The default value is * 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the * training process traverses the observations to build the * MLModel. The value is an integer that ranges from * 1 to 10000. The default value is * 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to * find the optimal solution for a variety of data types. The valid * values are auto and none. The default * value is none. We strongly * recommend that you shuffle your data. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients * to zero, resulting in a sparse feature set. If you use this * parameter, start by specifying a small value, such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 * is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients * to small, nonzero values. If you use this parameter, start by * specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 * is specified. Use this parameter sparingly. *

    *
  • */ public java.util.Map getParameters() { if (parameters == null) { parameters = new com.amazonaws.internal.SdkInternalMap(); } return parameters; } /** *

    * A list of the training parameters in the MLModel. The list * is implemented as a map of key-value pairs. *

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.maxMLModelSizeInBytes - The maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

      *

      * The value is an integer that ranges from 100000 to * 2147483648. The default value is 33554432. *

      *
    • *
    • *

      * sgd.maxPasses - The number of times that the training * process traverses the observations to build the MLModel. The * value is an integer that ranges from 1 to 10000 * . The default value is 10. *

      *
    • *
    • *

      * sgd.shuffleType - Whether Amazon ML shuffles the training * data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are * auto and none. The default value is * none. We strongly recommend that you shuffle your * data. *

      *
    • *
    • *

      * sgd.l1RegularizationAmount - The coefficient regularization * L1 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to zero, resulting in a * sparse feature set. If you use this parameter, start by specifying a * small value, such as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 normalization. This * parameter can't be used when L2 is specified. Use this * parameter sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - The coefficient regularization * L2 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to small, nonzero values. * If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

      *

      * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 normalization. This * parameter can't be used when L1 is specified. Use this * parameter sparingly. *

      *
    • *
    * * @param parameters * A list of the training parameters in the MLModel. The * list is implemented as a map of key-value pairs.

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.maxMLModelSizeInBytes - The maximum allowed size * of the model. Depending on the input data, the size of the model * might affect its performance. *

      *

      * The value is an integer that ranges from 100000 to * 2147483648. The default value is * 33554432. *

      *
    • *
    • *

      * sgd.maxPasses - The number of times that the training * process traverses the observations to build the * MLModel. The value is an integer that ranges from * 1 to 10000. The default value is * 10. *

      *
    • *
    • *

      * sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to * find the optimal solution for a variety of data types. The valid * values are auto and none. The default * value is none. We strongly recommend that you * shuffle your data. *

      *
    • *
    • *

      * sgd.l1RegularizationAmount - The coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * zero, resulting in a sparse feature set. If you use this * parameter, start by specifying a small value, such as * 1.0E-08. *

      *

      * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 * is specified. Use this parameter sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - The coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * small, nonzero values. If you use this parameter, start by * specifying a small value, such as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 * is specified. Use this parameter sparingly. *

      *
    • */ public void setParameters(java.util.Map parameters) { this.parameters = parameters == null ? null : new com.amazonaws.internal.SdkInternalMap( parameters); } /** *

      * A list of the training parameters in the MLModel. The list * is implemented as a map of key-value pairs. *

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.maxMLModelSizeInBytes - The maximum allowed size of the * model. Depending on the input data, the size of the model might affect * its performance. *

        *

        * The value is an integer that ranges from 100000 to * 2147483648. The default value is 33554432. *

        *
      • *
      • *

        * sgd.maxPasses - The number of times that the training * process traverses the observations to build the MLModel. The * value is an integer that ranges from 1 to 10000 * . The default value is 10. *

        *
      • *
      • *

        * sgd.shuffleType - Whether Amazon ML shuffles the training * data. Shuffling the data improves a model's ability to find the optimal * solution for a variety of data types. The valid values are * auto and none. The default value is * none. We strongly recommend that you shuffle your * data. *

        *
      • *
      • *

        * sgd.l1RegularizationAmount - The coefficient regularization * L1 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to zero, resulting in a * sparse feature set. If you use this parameter, start by specifying a * small value, such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 normalization. This * parameter can't be used when L2 is specified. Use this * parameter sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - The coefficient regularization * L2 norm. It controls overfitting the data by penalizing large * coefficients. This tends to drive coefficients to small, nonzero values. * If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

        *

        * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 normalization. This * parameter can't be used when L1 is specified. Use this * parameter sparingly. *

        *
      • *
      * * @param parameters * A list of the training parameters in the MLModel. The * list is implemented as a map of key-value pairs.

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.maxMLModelSizeInBytes - The maximum allowed size * of the model. Depending on the input data, the size of the model * might affect its performance. *

        *

        * The value is an integer that ranges from 100000 to * 2147483648. The default value is * 33554432. *

        *
      • *
      • *

        * sgd.maxPasses - The number of times that the training * process traverses the observations to build the * MLModel. The value is an integer that ranges from * 1 to 10000. The default value is * 10. *

        *
      • *
      • *

        * sgd.shuffleType - Whether Amazon ML shuffles the * training data. Shuffling the data improves a model's ability to * find the optimal solution for a variety of data types. The valid * values are auto and none. The default * value is none. We strongly recommend that you * shuffle your data. *

        *
      • *
      • *

        * sgd.l1RegularizationAmount - The coefficient * regularization L1 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * zero, resulting in a sparse feature set. If you use this * parameter, start by specifying a small value, such as * 1.0E-08. *

        *

        * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 * is specified. Use this parameter sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - The coefficient * regularization L2 norm. It controls overfitting the data by * penalizing large coefficients. This tends to drive coefficients to * small, nonzero values. If you use this parameter, start by * specifying a small value, such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to * MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 * is specified. Use this parameter sparingly. *

        *
      • * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withParameters( java.util.Map parameters) { setParameters(parameters); return this; } public CreateMLModelRequest addParametersEntry(String key, String value) { if (null == this.parameters) { this.parameters = new com.amazonaws.internal.SdkInternalMap(); } if (this.parameters.containsKey(key)) throw new IllegalArgumentException("Duplicated keys (" + key.toString() + ") are provided."); this.parameters.put(key, value); return this; } /** * Removes all the entries added into Parameters. <p> Returns a reference * to this object so that method calls can be chained together. */ public CreateMLModelRequest clearParametersEntries() { this.parameters = null; return this; } /** *

        * The DataSource that points to the training data. *

        * * @param trainingDataSourceId * The DataSource that points to the training data. */ public void setTrainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; } /** *

        * The DataSource that points to the training data. *

        * * @return The DataSource that points to the training data. */ public String getTrainingDataSourceId() { return this.trainingDataSourceId; } /** *

        * The DataSource that points to the training data. *

        * * @param trainingDataSourceId * The DataSource that points to the training data. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withTrainingDataSourceId( String trainingDataSourceId) { setTrainingDataSourceId(trainingDataSourceId); return this; } /** *

        * The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, * Amazon ML creates a default. *

        * * @param recipe * The data recipe for creating the MLModel. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. */ public void setRecipe(String recipe) { this.recipe = recipe; } /** *

        * The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, * Amazon ML creates a default. *

        * * @return The data recipe for creating the MLModel. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. */ public String getRecipe() { return this.recipe; } /** *

        * The data recipe for creating the MLModel. You must specify * either the recipe or its URI. If you don't specify a recipe or its URI, * Amazon ML creates a default. *

        * * @param recipe * The data recipe for creating the MLModel. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withRecipe(String recipe) { setRecipe(recipe); return this; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

        * * @param recipeUri * The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. */ public void setRecipeUri(String recipeUri) { this.recipeUri = recipeUri; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

        * * @return The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. */ public String getRecipeUri() { return this.recipeUri; } /** *

        * The Amazon Simple Storage Service (Amazon S3) location and file name that * contains the MLModel recipe. You must specify either the * recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

        * * @param recipeUri * The Amazon Simple Storage Service (Amazon S3) location and file * name that contains the MLModel recipe. You must * specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be * chained together. */ public CreateMLModelRequest withRecipeUri(String recipeUri) { setRecipeUri(recipeUri); return this; } /** * Returns a string representation of this object; useful for testing and * debugging. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMLModelId() != null) sb.append("MLModelId: " + getMLModelId() + ","); if (getMLModelName() != null) sb.append("MLModelName: " + getMLModelName() + ","); if (getMLModelType() != null) sb.append("MLModelType: " + getMLModelType() + ","); if (getParameters() != null) sb.append("Parameters: " + getParameters() + ","); if (getTrainingDataSourceId() != null) sb.append("TrainingDataSourceId: " + getTrainingDataSourceId() + ","); if (getRecipe() != null) sb.append("Recipe: " + getRecipe() + ","); if (getRecipeUri() != null) sb.append("RecipeUri: " + getRecipeUri()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateMLModelRequest == false) return false; CreateMLModelRequest other = (CreateMLModelRequest) obj; if (other.getMLModelId() == null ^ this.getMLModelId() == null) return false; if (other.getMLModelId() != null && other.getMLModelId().equals(this.getMLModelId()) == false) return false; if (other.getMLModelName() == null ^ this.getMLModelName() == null) return false; if (other.getMLModelName() != null && other.getMLModelName().equals(this.getMLModelName()) == false) return false; if (other.getMLModelType() == null ^ this.getMLModelType() == null) return false; if (other.getMLModelType() != null && other.getMLModelType().equals(this.getMLModelType()) == false) return false; if (other.getParameters() == null ^ this.getParameters() == null) return false; if (other.getParameters() != null && other.getParameters().equals(this.getParameters()) == false) return false; if (other.getTrainingDataSourceId() == null ^ this.getTrainingDataSourceId() == null) return false; if (other.getTrainingDataSourceId() != null && other.getTrainingDataSourceId().equals( this.getTrainingDataSourceId()) == false) return false; if (other.getRecipe() == null ^ this.getRecipe() == null) return false; if (other.getRecipe() != null && other.getRecipe().equals(this.getRecipe()) == false) return false; if (other.getRecipeUri() == null ^ this.getRecipeUri() == null) return false; if (other.getRecipeUri() != null && other.getRecipeUri().equals(this.getRecipeUri()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode()); hashCode = prime * hashCode + ((getMLModelName() == null) ? 0 : getMLModelName().hashCode()); hashCode = prime * hashCode + ((getMLModelType() == null) ? 0 : getMLModelType().hashCode()); hashCode = prime * hashCode + ((getParameters() == null) ? 0 : getParameters().hashCode()); hashCode = prime * hashCode + ((getTrainingDataSourceId() == null) ? 0 : getTrainingDataSourceId().hashCode()); hashCode = prime * hashCode + ((getRecipe() == null) ? 0 : getRecipe().hashCode()); hashCode = prime * hashCode + ((getRecipeUri() == null) ? 0 : getRecipeUri().hashCode()); return hashCode; } @Override public CreateMLModelRequest clone() { return (CreateMLModelRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy