All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.machinelearning.model.UpdateMLModelRequest Maven / Gradle / Ivy

Go to download

The AWS SDK for Java with support for OSGi. The AWS SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).

There is a newer version: 1.11.60
Show newest version
/*
 * Copyright 2011-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not
 * use this file except in compliance with the License. A copy of the License is
 * located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on
 * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;

import java.io.Serializable;
import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 */
public class UpdateMLModelRequest extends AmazonWebServiceRequest implements
        Serializable, Cloneable {

    /**
     * 

* The ID assigned to the MLModel during creation. *

*/ private String mLModelId; /** *

* A user-supplied name or description of the MLModel. *

*/ private String mLModelName; /** *

* The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold * receive a positive result from the MLModel, such as * true. Output values less than the * ScoreThreshold receive a negative response from the * MLModel, such as false. *

*/ private Float scoreThreshold; /** *

* The ID assigned to the MLModel during creation. *

* * @param mLModelId * The ID assigned to the MLModel during creation. */ public void setMLModelId(String mLModelId) { this.mLModelId = mLModelId; } /** *

* The ID assigned to the MLModel during creation. *

* * @return The ID assigned to the MLModel during creation. */ public String getMLModelId() { return this.mLModelId; } /** *

* The ID assigned to the MLModel during creation. *

* * @param mLModelId * The ID assigned to the MLModel during creation. * @return Returns a reference to this object so that method calls can be * chained together. */ public UpdateMLModelRequest withMLModelId(String mLModelId) { setMLModelId(mLModelId); return this; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. */ public void setMLModelName(String mLModelName) { this.mLModelName = mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String getMLModelName() { return this.mLModelName; } /** *

* A user-supplied name or description of the MLModel. *

* * @param mLModelName * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be * chained together. */ public UpdateMLModelRequest withMLModelName(String mLModelName) { setMLModelName(mLModelName); return this; } /** *

* The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold * receive a positive result from the MLModel, such as * true. Output values less than the * ScoreThreshold receive a negative response from the * MLModel, such as false. *

* * @param scoreThreshold * The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction.

*

* Output values greater than or equal to the * ScoreThreshold receive a positive result from the * MLModel, such as true. Output values * less than the ScoreThreshold receive a negative * response from the MLModel, such as false. */ public void setScoreThreshold(Float scoreThreshold) { this.scoreThreshold = scoreThreshold; } /** *

* The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold * receive a positive result from the MLModel, such as * true. Output values less than the * ScoreThreshold receive a negative response from the * MLModel, such as false. *

* * @return The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction.

*

* Output values greater than or equal to the * ScoreThreshold receive a positive result from the * MLModel, such as true. Output values * less than the ScoreThreshold receive a negative * response from the MLModel, such as * false. */ public Float getScoreThreshold() { return this.scoreThreshold; } /** *

* The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction. *

*

* Output values greater than or equal to the ScoreThreshold * receive a positive result from the MLModel, such as * true. Output values less than the * ScoreThreshold receive a negative response from the * MLModel, such as false. *

* * @param scoreThreshold * The ScoreThreshold used in binary classification * MLModel that marks the boundary between a positive * prediction and a negative prediction.

*

* Output values greater than or equal to the * ScoreThreshold receive a positive result from the * MLModel, such as true. Output values * less than the ScoreThreshold receive a negative * response from the MLModel, such as false. * @return Returns a reference to this object so that method calls can be * chained together. */ public UpdateMLModelRequest withScoreThreshold(Float scoreThreshold) { setScoreThreshold(scoreThreshold); return this; } /** * Returns a string representation of this object; useful for testing and * debugging. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMLModelId() != null) sb.append("MLModelId: " + getMLModelId() + ","); if (getMLModelName() != null) sb.append("MLModelName: " + getMLModelName() + ","); if (getScoreThreshold() != null) sb.append("ScoreThreshold: " + getScoreThreshold()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof UpdateMLModelRequest == false) return false; UpdateMLModelRequest other = (UpdateMLModelRequest) obj; if (other.getMLModelId() == null ^ this.getMLModelId() == null) return false; if (other.getMLModelId() != null && other.getMLModelId().equals(this.getMLModelId()) == false) return false; if (other.getMLModelName() == null ^ this.getMLModelName() == null) return false; if (other.getMLModelName() != null && other.getMLModelName().equals(this.getMLModelName()) == false) return false; if (other.getScoreThreshold() == null ^ this.getScoreThreshold() == null) return false; if (other.getScoreThreshold() != null && other.getScoreThreshold().equals(this.getScoreThreshold()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode()); hashCode = prime * hashCode + ((getMLModelName() == null) ? 0 : getMLModelName().hashCode()); hashCode = prime * hashCode + ((getScoreThreshold() == null) ? 0 : getScoreThreshold() .hashCode()); return hashCode; } @Override public UpdateMLModelRequest clone() { return (UpdateMLModelRequest) super.clone(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy