com.amazonaws.services.machinelearning.model.UpdateMLModelRequest Maven / Gradle / Ivy
Show all versions of aws-java-sdk-osgi Show documentation
/*
 * Copyright 2010-2016 Amazon.com, Inc. or its affiliates. All Rights
 * Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */
package com.amazonaws.services.machinelearning.model;
import java.io.Serializable;
import com.amazonaws.AmazonWebServiceRequest;
/**
 * 
 */
public class UpdateMLModelRequest extends AmazonWebServiceRequest implements
        Serializable, Cloneable {
    /**
     * 
     * The ID assigned to the MLModel during creation.
     * 
     */
    private String mLModelId;
    /**
     * 
     * A user-supplied name or description of the MLModel.
     * 
     */
    private String mLModelName;
    /**
     * 
     * The ScoreThreshold used in binary classification
     * MLModel that marks the boundary between a positive
     * prediction and a negative prediction.
     * 
     * 
     * Output values greater than or equal to the ScoreThreshold
     * receive a positive result from the MLModel, such as
     * true. Output values less than the
     * ScoreThreshold receive a negative response from the
     * MLModel, such as false.
     * 
     */
    private Float scoreThreshold;
    /**
     * 
     * The ID assigned to the MLModel during creation.
     * 
     * 
     * @param mLModelId
     *        The ID assigned to the MLModel during creation.
     */
    public void setMLModelId(String mLModelId) {
        this.mLModelId = mLModelId;
    }
    /**
     * 
     * The ID assigned to the MLModel during creation.
     * 
     * 
     * @return The ID assigned to the MLModel during creation.
     */
    public String getMLModelId() {
        return this.mLModelId;
    }
    /**
     * 
     * The ID assigned to the MLModel during creation.
     * 
     * 
     * @param mLModelId
     *        The ID assigned to the MLModel during creation.
     * @return Returns a reference to this object so that method calls can be
     *         chained together.
     */
    public UpdateMLModelRequest withMLModelId(String mLModelId) {
        setMLModelId(mLModelId);
        return this;
    }
    /**
     * 
     * A user-supplied name or description of the MLModel.
     * 
     * 
     * @param mLModelName
     *        A user-supplied name or description of the MLModel.
     */
    public void setMLModelName(String mLModelName) {
        this.mLModelName = mLModelName;
    }
    /**
     * 
     * A user-supplied name or description of the MLModel.
     * 
     * 
     * @return A user-supplied name or description of the MLModel.
     */
    public String getMLModelName() {
        return this.mLModelName;
    }
    /**
     * 
     * A user-supplied name or description of the MLModel.
     * 
     * 
     * @param mLModelName
     *        A user-supplied name or description of the MLModel.
     * @return Returns a reference to this object so that method calls can be
     *         chained together.
     */
    public UpdateMLModelRequest withMLModelName(String mLModelName) {
        setMLModelName(mLModelName);
        return this;
    }
    /**
     * 
     * The ScoreThreshold used in binary classification
     * MLModel that marks the boundary between a positive
     * prediction and a negative prediction.
     * 
     * 
     * Output values greater than or equal to the ScoreThreshold
     * receive a positive result from the MLModel, such as
     * true. Output values less than the
     * ScoreThreshold receive a negative response from the
     * MLModel, such as false.
     * 
     * 
     * @param scoreThreshold
     *        The ScoreThreshold used in binary classification
     *        MLModel that marks the boundary between a positive
     *        prediction and a negative prediction.
     *        
     *        Output values greater than or equal to the
     *        ScoreThreshold receive a positive result from the
     *        MLModel, such as true. Output values
     *        less than the ScoreThreshold receive a negative
     *        response from the MLModel, such as false.
     */
    public void setScoreThreshold(Float scoreThreshold) {
        this.scoreThreshold = scoreThreshold;
    }
    /**
     * 
     * The ScoreThreshold used in binary classification
     * MLModel that marks the boundary between a positive
     * prediction and a negative prediction.
     * 
     * 
     * Output values greater than or equal to the ScoreThreshold
     * receive a positive result from the MLModel, such as
     * true. Output values less than the
     * ScoreThreshold receive a negative response from the
     * MLModel, such as false.
     * 
     * 
     * @return The ScoreThreshold used in binary classification
     *         MLModel that marks the boundary between a positive
     *         prediction and a negative prediction.
     *         
     *         Output values greater than or equal to the
     *         ScoreThreshold receive a positive result from the
     *         MLModel, such as true. Output values
     *         less than the ScoreThreshold receive a negative
     *         response from the MLModel, such as
     *         false.
     */
    public Float getScoreThreshold() {
        return this.scoreThreshold;
    }
    /**
     * 
     * The ScoreThreshold used in binary classification
     * MLModel that marks the boundary between a positive
     * prediction and a negative prediction.
     * 
     * 
     * Output values greater than or equal to the ScoreThreshold
     * receive a positive result from the MLModel, such as
     * true. Output values less than the
     * ScoreThreshold receive a negative response from the
     * MLModel, such as false.
     * 
     * 
     * @param scoreThreshold
     *        The ScoreThreshold used in binary classification
     *        MLModel that marks the boundary between a positive
     *        prediction and a negative prediction.
     *        
     *        Output values greater than or equal to the
     *        ScoreThreshold receive a positive result from the
     *        MLModel, such as true. Output values
     *        less than the ScoreThreshold receive a negative
     *        response from the MLModel, such as false.
     * @return Returns a reference to this object so that method calls can be
     *         chained together.
     */
    public UpdateMLModelRequest withScoreThreshold(Float scoreThreshold) {
        setScoreThreshold(scoreThreshold);
        return this;
    }
    /**
     * Returns a string representation of this object; useful for testing and
     * debugging.
     *
     * @return A string representation of this object.
     *
     * @see java.lang.Object#toString()
     */
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("{");
        if (getMLModelId() != null)
            sb.append("MLModelId: " + getMLModelId() + ",");
        if (getMLModelName() != null)
            sb.append("MLModelName: " + getMLModelName() + ",");
        if (getScoreThreshold() != null)
            sb.append("ScoreThreshold: " + getScoreThreshold());
        sb.append("}");
        return sb.toString();
    }
    @Override
    public boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (obj instanceof UpdateMLModelRequest == false)
            return false;
        UpdateMLModelRequest other = (UpdateMLModelRequest) obj;
        if (other.getMLModelId() == null ^ this.getMLModelId() == null)
            return false;
        if (other.getMLModelId() != null
                && other.getMLModelId().equals(this.getMLModelId()) == false)
            return false;
        if (other.getMLModelName() == null ^ this.getMLModelName() == null)
            return false;
        if (other.getMLModelName() != null
                && other.getMLModelName().equals(this.getMLModelName()) == false)
            return false;
        if (other.getScoreThreshold() == null
                ^ this.getScoreThreshold() == null)
            return false;
        if (other.getScoreThreshold() != null
                && other.getScoreThreshold().equals(this.getScoreThreshold()) == false)
            return false;
        return true;
    }
    @Override
    public int hashCode() {
        final int prime = 31;
        int hashCode = 1;
        hashCode = prime * hashCode
                + ((getMLModelId() == null) ? 0 : getMLModelId().hashCode());
        hashCode = prime
                * hashCode
                + ((getMLModelName() == null) ? 0 : getMLModelName().hashCode());
        hashCode = prime
                * hashCode
                + ((getScoreThreshold() == null) ? 0 : getScoreThreshold()
                        .hashCode());
        return hashCode;
    }
    @Override
    public UpdateMLModelRequest clone() {
        return (UpdateMLModelRequest) super.clone();
    }
}