All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.personalize.model.CreateSolutionRequest Maven / Gradle / Ivy

/*
 * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.personalize.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API
 *      Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreateSolutionRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* The name for the solution. *

*/ private String name; /** *

* Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false. *

*

* When performing AutoML, this parameter is always true and you should not set it to * false. *

*/ private Boolean performHPO; /** * *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon * Personalize recipes. For more information, see Determining your use case. *

*
*

* Whether to perform automated machine learning (AutoML). The default is false. For this case, you * must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon * Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML * lengthens the training process as compared to selecting a specific recipe. *

*/ private Boolean performAutoML; /** *

* The ARN of the recipe to use for model training. Only specified when performAutoML is false. *

*/ private String recipeArn; /** *

* The Amazon Resource Name (ARN) of the dataset group that provides the training data. *

*/ private String datasetGroupArn; /** *

* When your have multiple event types (using an EVENT_TYPE schema field), this parameter specifies * which event type (for example, 'click' or 'like') is used for training the model. *

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training with * equal weight regardless of type. *

*/ private String eventType; /** *

* The configuration to use with the solution. When performAutoML is set to true, Amazon Personalize * only evaluates the autoMLConfig section of the solution configuration. *

* *

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*
*/ private SolutionConfig solutionConfig; /** *

* A list of tags to apply to * the solution. *

*/ private java.util.List tags; /** *

* The name for the solution. *

* * @param name * The name for the solution. */ public void setName(String name) { this.name = name; } /** *

* The name for the solution. *

* * @return The name for the solution. */ public String getName() { return this.name; } /** *

* The name for the solution. *

* * @param name * The name for the solution. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withName(String name) { setName(name); return this; } /** *

* Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false. *

*

* When performing AutoML, this parameter is always true and you should not set it to * false. *

* * @param performHPO * Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false.

*

* When performing AutoML, this parameter is always true and you should not set it to * false. */ public void setPerformHPO(Boolean performHPO) { this.performHPO = performHPO; } /** *

* Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false. *

*

* When performing AutoML, this parameter is always true and you should not set it to * false. *

* * @return Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false.

*

* When performing AutoML, this parameter is always true and you should not set it to * false. */ public Boolean getPerformHPO() { return this.performHPO; } /** *

* Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false. *

*

* When performing AutoML, this parameter is always true and you should not set it to * false. *

* * @param performHPO * Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false.

*

* When performing AutoML, this parameter is always true and you should not set it to * false. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withPerformHPO(Boolean performHPO) { setPerformHPO(performHPO); return this; } /** *

* Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false. *

*

* When performing AutoML, this parameter is always true and you should not set it to * false. *

* * @return Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is * false.

*

* When performing AutoML, this parameter is always true and you should not set it to * false. */ public Boolean isPerformHPO() { return this.performHPO; } /** * *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon * Personalize recipes. For more information, see Determining your use case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, you * must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon * Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML * lengthens the training process as compared to selecting a specific recipe. *

* * @param performAutoML *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available * Amazon Personalize recipes. For more information, see Determining your use * case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, * you must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. * Amazon Personalize determines the optimal recipe by running tests with different values for the * hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe. */ public void setPerformAutoML(Boolean performAutoML) { this.performAutoML = performAutoML; } /** * *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon * Personalize recipes. For more information, see Determining your use case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, you * must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon * Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML * lengthens the training process as compared to selecting a specific recipe. *

* * @return

* We don't recommend enabling automated machine learning. Instead, match your use case to the available * Amazon Personalize recipes. For more information, see Determining your use * case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, * you must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. * Amazon Personalize determines the optimal recipe by running tests with different values for the * hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe. */ public Boolean getPerformAutoML() { return this.performAutoML; } /** * *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon * Personalize recipes. For more information, see Determining your use case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, you * must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon * Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML * lengthens the training process as compared to selecting a specific recipe. *

* * @param performAutoML *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available * Amazon Personalize recipes. For more information, see Determining your use * case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, * you must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. * Amazon Personalize determines the optimal recipe by running tests with different values for the * hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withPerformAutoML(Boolean performAutoML) { setPerformAutoML(performAutoML); return this; } /** * *

* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon * Personalize recipes. For more information, see Determining your use case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, you * must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon * Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML * lengthens the training process as compared to selecting a specific recipe. *

* * @return

* We don't recommend enabling automated machine learning. Instead, match your use case to the available * Amazon Personalize recipes. For more information, see Determining your use * case. *

* *

* Whether to perform automated machine learning (AutoML). The default is false. For this case, * you must specify recipeArn. *

*

* When set to true, Amazon Personalize analyzes your training data and selects the optimal * USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. * Amazon Personalize determines the optimal recipe by running tests with different values for the * hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe. */ public Boolean isPerformAutoML() { return this.performAutoML; } /** *

* The ARN of the recipe to use for model training. Only specified when performAutoML is false. *

* * @param recipeArn * The ARN of the recipe to use for model training. Only specified when performAutoML is false. */ public void setRecipeArn(String recipeArn) { this.recipeArn = recipeArn; } /** *

* The ARN of the recipe to use for model training. Only specified when performAutoML is false. *

* * @return The ARN of the recipe to use for model training. Only specified when performAutoML is false. */ public String getRecipeArn() { return this.recipeArn; } /** *

* The ARN of the recipe to use for model training. Only specified when performAutoML is false. *

* * @param recipeArn * The ARN of the recipe to use for model training. Only specified when performAutoML is false. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withRecipeArn(String recipeArn) { setRecipeArn(recipeArn); return this; } /** *

* The Amazon Resource Name (ARN) of the dataset group that provides the training data. *

* * @param datasetGroupArn * The Amazon Resource Name (ARN) of the dataset group that provides the training data. */ public void setDatasetGroupArn(String datasetGroupArn) { this.datasetGroupArn = datasetGroupArn; } /** *

* The Amazon Resource Name (ARN) of the dataset group that provides the training data. *

* * @return The Amazon Resource Name (ARN) of the dataset group that provides the training data. */ public String getDatasetGroupArn() { return this.datasetGroupArn; } /** *

* The Amazon Resource Name (ARN) of the dataset group that provides the training data. *

* * @param datasetGroupArn * The Amazon Resource Name (ARN) of the dataset group that provides the training data. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withDatasetGroupArn(String datasetGroupArn) { setDatasetGroupArn(datasetGroupArn); return this; } /** *

* When your have multiple event types (using an EVENT_TYPE schema field), this parameter specifies * which event type (for example, 'click' or 'like') is used for training the model. *

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training with * equal weight regardless of type. *

* * @param eventType * When your have multiple event types (using an EVENT_TYPE schema field), this parameter * specifies which event type (for example, 'click' or 'like') is used for training the model.

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training * with equal weight regardless of type. */ public void setEventType(String eventType) { this.eventType = eventType; } /** *

* When your have multiple event types (using an EVENT_TYPE schema field), this parameter specifies * which event type (for example, 'click' or 'like') is used for training the model. *

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training with * equal weight regardless of type. *

* * @return When your have multiple event types (using an EVENT_TYPE schema field), this parameter * specifies which event type (for example, 'click' or 'like') is used for training the model.

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for * training with equal weight regardless of type. */ public String getEventType() { return this.eventType; } /** *

* When your have multiple event types (using an EVENT_TYPE schema field), this parameter specifies * which event type (for example, 'click' or 'like') is used for training the model. *

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training with * equal weight regardless of type. *

* * @param eventType * When your have multiple event types (using an EVENT_TYPE schema field), this parameter * specifies which event type (for example, 'click' or 'like') is used for training the model.

*

* If you do not provide an eventType, Amazon Personalize will use all interactions for training * with equal weight regardless of type. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withEventType(String eventType) { setEventType(eventType); return this; } /** *

* The configuration to use with the solution. When performAutoML is set to true, Amazon Personalize * only evaluates the autoMLConfig section of the solution configuration. *

* *

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*
* * @param solutionConfig * The configuration to use with the solution. When performAutoML is set to true, Amazon * Personalize only evaluates the autoMLConfig section of the solution configuration.

*

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*/ public void setSolutionConfig(SolutionConfig solutionConfig) { this.solutionConfig = solutionConfig; } /** *

* The configuration to use with the solution. When performAutoML is set to true, Amazon Personalize * only evaluates the autoMLConfig section of the solution configuration. *

* *

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*
* * @return The configuration to use with the solution. When performAutoML is set to true, Amazon * Personalize only evaluates the autoMLConfig section of the solution configuration.

* *

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*/ public SolutionConfig getSolutionConfig() { return this.solutionConfig; } /** *

* The configuration to use with the solution. When performAutoML is set to true, Amazon Personalize * only evaluates the autoMLConfig section of the solution configuration. *

* *

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

*
* * @param solutionConfig * The configuration to use with the solution. When performAutoML is set to true, Amazon * Personalize only evaluates the autoMLConfig section of the solution configuration.

*

* Amazon Personalize doesn't support configuring the hpoObjective at this time. *

* @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withSolutionConfig(SolutionConfig solutionConfig) { setSolutionConfig(solutionConfig); return this; } /** *

* A list of tags to apply to * the solution. *

* * @return A list of tags to * apply to the solution. */ public java.util.List getTags() { return tags; } /** *

* A list of tags to apply to * the solution. *

* * @param tags * A list of tags to * apply to the solution. */ public void setTags(java.util.Collection tags) { if (tags == null) { this.tags = null; return; } this.tags = new java.util.ArrayList(tags); } /** *

* A list of tags to apply to * the solution. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setTags(java.util.Collection)} or {@link #withTags(java.util.Collection)} if you want to override the * existing values. *

* * @param tags * A list of tags to * apply to the solution. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withTags(Tag... tags) { if (this.tags == null) { setTags(new java.util.ArrayList(tags.length)); } for (Tag ele : tags) { this.tags.add(ele); } return this; } /** *

* A list of tags to apply to * the solution. *

* * @param tags * A list of tags to * apply to the solution. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateSolutionRequest withTags(java.util.Collection tags) { setTags(tags); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getName() != null) sb.append("Name: ").append(getName()).append(","); if (getPerformHPO() != null) sb.append("PerformHPO: ").append(getPerformHPO()).append(","); if (getPerformAutoML() != null) sb.append("PerformAutoML: ").append(getPerformAutoML()).append(","); if (getRecipeArn() != null) sb.append("RecipeArn: ").append(getRecipeArn()).append(","); if (getDatasetGroupArn() != null) sb.append("DatasetGroupArn: ").append(getDatasetGroupArn()).append(","); if (getEventType() != null) sb.append("EventType: ").append(getEventType()).append(","); if (getSolutionConfig() != null) sb.append("SolutionConfig: ").append(getSolutionConfig()).append(","); if (getTags() != null) sb.append("Tags: ").append(getTags()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateSolutionRequest == false) return false; CreateSolutionRequest other = (CreateSolutionRequest) obj; if (other.getName() == null ^ this.getName() == null) return false; if (other.getName() != null && other.getName().equals(this.getName()) == false) return false; if (other.getPerformHPO() == null ^ this.getPerformHPO() == null) return false; if (other.getPerformHPO() != null && other.getPerformHPO().equals(this.getPerformHPO()) == false) return false; if (other.getPerformAutoML() == null ^ this.getPerformAutoML() == null) return false; if (other.getPerformAutoML() != null && other.getPerformAutoML().equals(this.getPerformAutoML()) == false) return false; if (other.getRecipeArn() == null ^ this.getRecipeArn() == null) return false; if (other.getRecipeArn() != null && other.getRecipeArn().equals(this.getRecipeArn()) == false) return false; if (other.getDatasetGroupArn() == null ^ this.getDatasetGroupArn() == null) return false; if (other.getDatasetGroupArn() != null && other.getDatasetGroupArn().equals(this.getDatasetGroupArn()) == false) return false; if (other.getEventType() == null ^ this.getEventType() == null) return false; if (other.getEventType() != null && other.getEventType().equals(this.getEventType()) == false) return false; if (other.getSolutionConfig() == null ^ this.getSolutionConfig() == null) return false; if (other.getSolutionConfig() != null && other.getSolutionConfig().equals(this.getSolutionConfig()) == false) return false; if (other.getTags() == null ^ this.getTags() == null) return false; if (other.getTags() != null && other.getTags().equals(this.getTags()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getName() == null) ? 0 : getName().hashCode()); hashCode = prime * hashCode + ((getPerformHPO() == null) ? 0 : getPerformHPO().hashCode()); hashCode = prime * hashCode + ((getPerformAutoML() == null) ? 0 : getPerformAutoML().hashCode()); hashCode = prime * hashCode + ((getRecipeArn() == null) ? 0 : getRecipeArn().hashCode()); hashCode = prime * hashCode + ((getDatasetGroupArn() == null) ? 0 : getDatasetGroupArn().hashCode()); hashCode = prime * hashCode + ((getEventType() == null) ? 0 : getEventType().hashCode()); hashCode = prime * hashCode + ((getSolutionConfig() == null) ? 0 : getSolutionConfig().hashCode()); hashCode = prime * hashCode + ((getTags() == null) ? 0 : getTags().hashCode()); return hashCode; } @Override public CreateSolutionRequest clone() { return (CreateSolutionRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy