All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.personalize.model.AutoMLConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Personalize module holds the client classes that are used for communicating with Amazon Personalize Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.personalize.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* When the solution performs AutoML (performAutoML is true in CreateSolution), Amazon * Personalize determines which recipe, from the specified list, optimizes the given metric. Amazon Personalize then * uses that recipe for the solution. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class AutoMLConfig implements Serializable, Cloneable, StructuredPojo { /** *

* The metric to optimize. *

*/ private String metricName; /** *

* The list of candidate recipes. *

*/ private java.util.List recipeList; /** *

* The metric to optimize. *

* * @param metricName * The metric to optimize. */ public void setMetricName(String metricName) { this.metricName = metricName; } /** *

* The metric to optimize. *

* * @return The metric to optimize. */ public String getMetricName() { return this.metricName; } /** *

* The metric to optimize. *

* * @param metricName * The metric to optimize. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLConfig withMetricName(String metricName) { setMetricName(metricName); return this; } /** *

* The list of candidate recipes. *

* * @return The list of candidate recipes. */ public java.util.List getRecipeList() { return recipeList; } /** *

* The list of candidate recipes. *

* * @param recipeList * The list of candidate recipes. */ public void setRecipeList(java.util.Collection recipeList) { if (recipeList == null) { this.recipeList = null; return; } this.recipeList = new java.util.ArrayList(recipeList); } /** *

* The list of candidate recipes. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setRecipeList(java.util.Collection)} or {@link #withRecipeList(java.util.Collection)} if you want to * override the existing values. *

* * @param recipeList * The list of candidate recipes. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLConfig withRecipeList(String... recipeList) { if (this.recipeList == null) { setRecipeList(new java.util.ArrayList(recipeList.length)); } for (String ele : recipeList) { this.recipeList.add(ele); } return this; } /** *

* The list of candidate recipes. *

* * @param recipeList * The list of candidate recipes. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLConfig withRecipeList(java.util.Collection recipeList) { setRecipeList(recipeList); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getMetricName() != null) sb.append("MetricName: ").append(getMetricName()).append(","); if (getRecipeList() != null) sb.append("RecipeList: ").append(getRecipeList()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof AutoMLConfig == false) return false; AutoMLConfig other = (AutoMLConfig) obj; if (other.getMetricName() == null ^ this.getMetricName() == null) return false; if (other.getMetricName() != null && other.getMetricName().equals(this.getMetricName()) == false) return false; if (other.getRecipeList() == null ^ this.getRecipeList() == null) return false; if (other.getRecipeList() != null && other.getRecipeList().equals(this.getRecipeList()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getMetricName() == null) ? 0 : getMetricName().hashCode()); hashCode = prime * hashCode + ((getRecipeList() == null) ? 0 : getRecipeList().hashCode()); return hashCode; } @Override public AutoMLConfig clone() { try { return (AutoMLConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.personalize.model.transform.AutoMLConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy