All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.ClarifyShapConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

There is a newer version: 1.12.772
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* The configuration for SHAP analysis using SageMaker Clarify Explainer. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class ClarifyShapConfig implements Serializable, Cloneable, StructuredPojo { /** *

* The configuration for the SHAP baseline of the Kernal SHAP algorithm. *

*/ private ClarifyShapBaselineConfig shapBaselineConfig; /** *

* The number of samples to be used for analysis by the Kernal SHAP algorithm. *

* *

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*
*/ private Integer numberOfSamples; /** *

* A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model * predictions. Defaults to false. *

*/ private Boolean useLogit; /** *

* The starting value used to initialize the random number generator in the explainer. Provide a value for this * parameter to obtain a deterministic SHAP result. *

*/ private Integer seed; /** *

* A parameter that indicates if text features are treated as text and explanations are provided for individual * units of text. Required for natural language processing (NLP) explainability only. *

*/ private ClarifyTextConfig textConfig; /** *

* The configuration for the SHAP baseline of the Kernal SHAP algorithm. *

* * @param shapBaselineConfig * The configuration for the SHAP baseline of the Kernal SHAP algorithm. */ public void setShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig) { this.shapBaselineConfig = shapBaselineConfig; } /** *

* The configuration for the SHAP baseline of the Kernal SHAP algorithm. *

* * @return The configuration for the SHAP baseline of the Kernal SHAP algorithm. */ public ClarifyShapBaselineConfig getShapBaselineConfig() { return this.shapBaselineConfig; } /** *

* The configuration for the SHAP baseline of the Kernal SHAP algorithm. *

* * @param shapBaselineConfig * The configuration for the SHAP baseline of the Kernal SHAP algorithm. * @return Returns a reference to this object so that method calls can be chained together. */ public ClarifyShapConfig withShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig) { setShapBaselineConfig(shapBaselineConfig); return this; } /** *

* The number of samples to be used for analysis by the Kernal SHAP algorithm. *

* *

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*
* * @param numberOfSamples * The number of samples to be used for analysis by the Kernal SHAP algorithm.

*

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*/ public void setNumberOfSamples(Integer numberOfSamples) { this.numberOfSamples = numberOfSamples; } /** *

* The number of samples to be used for analysis by the Kernal SHAP algorithm. *

* *

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*
* * @return The number of samples to be used for analysis by the Kernal SHAP algorithm.

*

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*/ public Integer getNumberOfSamples() { return this.numberOfSamples; } /** *

* The number of samples to be used for analysis by the Kernal SHAP algorithm. *

* *

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

*
* * @param numberOfSamples * The number of samples to be used for analysis by the Kernal SHAP algorithm.

*

* The number of samples determines the size of the synthetic dataset, which has an impact on latency of * explainability requests. For more information, see the Synthetic data of Configure and create an endpoint. *

* @return Returns a reference to this object so that method calls can be chained together. */ public ClarifyShapConfig withNumberOfSamples(Integer numberOfSamples) { setNumberOfSamples(numberOfSamples); return this; } /** *

* A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model * predictions. Defaults to false. *

* * @param useLogit * A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for * model predictions. Defaults to false. */ public void setUseLogit(Boolean useLogit) { this.useLogit = useLogit; } /** *

* A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model * predictions. Defaults to false. *

* * @return A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for * model predictions. Defaults to false. */ public Boolean getUseLogit() { return this.useLogit; } /** *

* A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model * predictions. Defaults to false. *

* * @param useLogit * A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for * model predictions. Defaults to false. * @return Returns a reference to this object so that method calls can be chained together. */ public ClarifyShapConfig withUseLogit(Boolean useLogit) { setUseLogit(useLogit); return this; } /** *

* A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model * predictions. Defaults to false. *

* * @return A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for * model predictions. Defaults to false. */ public Boolean isUseLogit() { return this.useLogit; } /** *

* The starting value used to initialize the random number generator in the explainer. Provide a value for this * parameter to obtain a deterministic SHAP result. *

* * @param seed * The starting value used to initialize the random number generator in the explainer. Provide a value for * this parameter to obtain a deterministic SHAP result. */ public void setSeed(Integer seed) { this.seed = seed; } /** *

* The starting value used to initialize the random number generator in the explainer. Provide a value for this * parameter to obtain a deterministic SHAP result. *

* * @return The starting value used to initialize the random number generator in the explainer. Provide a value for * this parameter to obtain a deterministic SHAP result. */ public Integer getSeed() { return this.seed; } /** *

* The starting value used to initialize the random number generator in the explainer. Provide a value for this * parameter to obtain a deterministic SHAP result. *

* * @param seed * The starting value used to initialize the random number generator in the explainer. Provide a value for * this parameter to obtain a deterministic SHAP result. * @return Returns a reference to this object so that method calls can be chained together. */ public ClarifyShapConfig withSeed(Integer seed) { setSeed(seed); return this; } /** *

* A parameter that indicates if text features are treated as text and explanations are provided for individual * units of text. Required for natural language processing (NLP) explainability only. *

* * @param textConfig * A parameter that indicates if text features are treated as text and explanations are provided for * individual units of text. Required for natural language processing (NLP) explainability only. */ public void setTextConfig(ClarifyTextConfig textConfig) { this.textConfig = textConfig; } /** *

* A parameter that indicates if text features are treated as text and explanations are provided for individual * units of text. Required for natural language processing (NLP) explainability only. *

* * @return A parameter that indicates if text features are treated as text and explanations are provided for * individual units of text. Required for natural language processing (NLP) explainability only. */ public ClarifyTextConfig getTextConfig() { return this.textConfig; } /** *

* A parameter that indicates if text features are treated as text and explanations are provided for individual * units of text. Required for natural language processing (NLP) explainability only. *

* * @param textConfig * A parameter that indicates if text features are treated as text and explanations are provided for * individual units of text. Required for natural language processing (NLP) explainability only. * @return Returns a reference to this object so that method calls can be chained together. */ public ClarifyShapConfig withTextConfig(ClarifyTextConfig textConfig) { setTextConfig(textConfig); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getShapBaselineConfig() != null) sb.append("ShapBaselineConfig: ").append(getShapBaselineConfig()).append(","); if (getNumberOfSamples() != null) sb.append("NumberOfSamples: ").append(getNumberOfSamples()).append(","); if (getUseLogit() != null) sb.append("UseLogit: ").append(getUseLogit()).append(","); if (getSeed() != null) sb.append("Seed: ").append(getSeed()).append(","); if (getTextConfig() != null) sb.append("TextConfig: ").append(getTextConfig()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof ClarifyShapConfig == false) return false; ClarifyShapConfig other = (ClarifyShapConfig) obj; if (other.getShapBaselineConfig() == null ^ this.getShapBaselineConfig() == null) return false; if (other.getShapBaselineConfig() != null && other.getShapBaselineConfig().equals(this.getShapBaselineConfig()) == false) return false; if (other.getNumberOfSamples() == null ^ this.getNumberOfSamples() == null) return false; if (other.getNumberOfSamples() != null && other.getNumberOfSamples().equals(this.getNumberOfSamples()) == false) return false; if (other.getUseLogit() == null ^ this.getUseLogit() == null) return false; if (other.getUseLogit() != null && other.getUseLogit().equals(this.getUseLogit()) == false) return false; if (other.getSeed() == null ^ this.getSeed() == null) return false; if (other.getSeed() != null && other.getSeed().equals(this.getSeed()) == false) return false; if (other.getTextConfig() == null ^ this.getTextConfig() == null) return false; if (other.getTextConfig() != null && other.getTextConfig().equals(this.getTextConfig()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getShapBaselineConfig() == null) ? 0 : getShapBaselineConfig().hashCode()); hashCode = prime * hashCode + ((getNumberOfSamples() == null) ? 0 : getNumberOfSamples().hashCode()); hashCode = prime * hashCode + ((getUseLogit() == null) ? 0 : getUseLogit().hashCode()); hashCode = prime * hashCode + ((getSeed() == null) ? 0 : getSeed().hashCode()); hashCode = prime * hashCode + ((getTextConfig() == null) ? 0 : getTextConfig().hashCode()); return hashCode; } @Override public ClarifyShapConfig clone() { try { return (ClarifyShapConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.ClarifyShapConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy