All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.AutoMLAlgorithmConfig Maven / Gradle / Ivy

/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class AutoMLAlgorithmConfig implements Serializable, Cloneable, StructuredPojo { /** *

* The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

*
    *
  • *

    * For the tabular problem type TabularJobConfig: *

    * *

    * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

    *
    *
      *
    • *

      * In ENSEMBLING mode: *

      *
        *
      • *

        * "catboost" *

        *
      • *
      • *

        * "extra-trees" *

        *
      • *
      • *

        * "fastai" *

        *
      • *
      • *

        * "lightgbm" *

        *
      • *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "nn-torch" *

        *
      • *
      • *

        * "randomforest" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    • *

      * In HYPERPARAMETER_TUNING mode: *

      *
        *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "mlp" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    *
  • *
  • *

    * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

    *
      *
    • *

      * Choose your algorithms from this list. *

      *
        *
      • *

        * "cnn-qr" *

        *
      • *
      • *

        * "deepar" *

        *
      • *
      • *

        * "prophet" *

        *
      • *
      • *

        * "arima" *

        *
      • *
      • *

        * "npts" *

        *
      • *
      • *

        * "ets" *

        *
      • *
      *
    • *
    *
  • *
*/ private java.util.List autoMLAlgorithms; /** *

* The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

*
    *
  • *

    * For the tabular problem type TabularJobConfig: *

    * *

    * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

    *
    *
      *
    • *

      * In ENSEMBLING mode: *

      *
        *
      • *

        * "catboost" *

        *
      • *
      • *

        * "extra-trees" *

        *
      • *
      • *

        * "fastai" *

        *
      • *
      • *

        * "lightgbm" *

        *
      • *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "nn-torch" *

        *
      • *
      • *

        * "randomforest" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    • *

      * In HYPERPARAMETER_TUNING mode: *

      *
        *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "mlp" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    *
  • *
  • *

    * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

    *
      *
    • *

      * Choose your algorithms from this list. *

      *
        *
      • *

        * "cnn-qr" *

        *
      • *
      • *

        * "deepar" *

        *
      • *
      • *

        * "prophet" *

        *
      • *
      • *

        * "arima" *

        *
      • *
      • *

        * "npts" *

        *
      • *
      • *

        * "ets" *

        *
      • *
      *
    • *
    *
  • *
* * @return The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot * job.

*
    *
  • *

    * For the tabular problem type TabularJobConfig: *

    * *

    * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a * minimum of 1 algorithm. *

    *
    *
      *
    • *

      * In ENSEMBLING mode: *

      *
        *
      • *

        * "catboost" *

        *
      • *
      • *

        * "extra-trees" *

        *
      • *
      • *

        * "fastai" *

        *
      • *
      • *

        * "lightgbm" *

        *
      • *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "nn-torch" *

        *
      • *
      • *

        * "randomforest" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    • *

      * In HYPERPARAMETER_TUNING mode: *

      *
        *
      • *

        * "linear-learner" *

        *
      • *
      • *

        * "mlp" *

        *
      • *
      • *

        * "xgboost" *

        *
      • *
      *
    • *
    *
  • *
  • *

    * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

    *
      *
    • *

      * Choose your algorithms from this list. *

      *
        *
      • *

        * "cnn-qr" *

        *
      • *
      • *

        * "deepar" *

        *
      • *
      • *

        * "prophet" *

        *
      • *
      • *

        * "arima" *

        *
      • *
      • *

        * "npts" *

        *
      • *
      • *

        * "ets" *

        *
      • *
      *
    • *
    *
  • * @see AutoMLAlgorithm */ public java.util.List getAutoMLAlgorithms() { return autoMLAlgorithms; } /** *

    * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

    *
      *
    • *

      * For the tabular problem type TabularJobConfig: *

      * *

      * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

      *
      *
        *
      • *

        * In ENSEMBLING mode: *

        *
          *
        • *

          * "catboost" *

          *
        • *
        • *

          * "extra-trees" *

          *
        • *
        • *

          * "fastai" *

          *
        • *
        • *

          * "lightgbm" *

          *
        • *
        • *

          * "linear-learner" *

          *
        • *
        • *

          * "nn-torch" *

          *
        • *
        • *

          * "randomforest" *

          *
        • *
        • *

          * "xgboost" *

          *
        • *
        *
      • *
      • *

        * In HYPERPARAMETER_TUNING mode: *

        *
          *
        • *

          * "linear-learner" *

          *
        • *
        • *

          * "mlp" *

          *
        • *
        • *

          * "xgboost" *

          *
        • *
        *
      • *
      *
    • *
    • *

      * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

      *
        *
      • *

        * Choose your algorithms from this list. *

        *
          *
        • *

          * "cnn-qr" *

          *
        • *
        • *

          * "deepar" *

          *
        • *
        • *

          * "prophet" *

          *
        • *
        • *

          * "arima" *

          *
        • *
        • *

          * "npts" *

          *
        • *
        • *

          * "ets" *

          *
        • *
        *
      • *
      *
    • *
    * * @param autoMLAlgorithms * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot * job.

    *
      *
    • *

      * For the tabular problem type TabularJobConfig: *

      * *

      * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a * minimum of 1 algorithm. *

      *
      *
        *
      • *

        * In ENSEMBLING mode: *

        *
          *
        • *

          * "catboost" *

          *
        • *
        • *

          * "extra-trees" *

          *
        • *
        • *

          * "fastai" *

          *
        • *
        • *

          * "lightgbm" *

          *
        • *
        • *

          * "linear-learner" *

          *
        • *
        • *

          * "nn-torch" *

          *
        • *
        • *

          * "randomforest" *

          *
        • *
        • *

          * "xgboost" *

          *
        • *
        *
      • *
      • *

        * In HYPERPARAMETER_TUNING mode: *

        *
          *
        • *

          * "linear-learner" *

          *
        • *
        • *

          * "mlp" *

          *
        • *
        • *

          * "xgboost" *

          *
        • *
        *
      • *
      *
    • *
    • *

      * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

      *
        *
      • *

        * Choose your algorithms from this list. *

        *
          *
        • *

          * "cnn-qr" *

          *
        • *
        • *

          * "deepar" *

          *
        • *
        • *

          * "prophet" *

          *
        • *
        • *

          * "arima" *

          *
        • *
        • *

          * "npts" *

          *
        • *
        • *

          * "ets" *

          *
        • *
        *
      • *
      *
    • * @see AutoMLAlgorithm */ public void setAutoMLAlgorithms(java.util.Collection autoMLAlgorithms) { if (autoMLAlgorithms == null) { this.autoMLAlgorithms = null; return; } this.autoMLAlgorithms = new java.util.ArrayList(autoMLAlgorithms); } /** *

      * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

      *
        *
      • *

        * For the tabular problem type TabularJobConfig: *

        * *

        * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

        *
        *
          *
        • *

          * In ENSEMBLING mode: *

          *
            *
          • *

            * "catboost" *

            *
          • *
          • *

            * "extra-trees" *

            *
          • *
          • *

            * "fastai" *

            *
          • *
          • *

            * "lightgbm" *

            *
          • *
          • *

            * "linear-learner" *

            *
          • *
          • *

            * "nn-torch" *

            *
          • *
          • *

            * "randomforest" *

            *
          • *
          • *

            * "xgboost" *

            *
          • *
          *
        • *
        • *

          * In HYPERPARAMETER_TUNING mode: *

          *
            *
          • *

            * "linear-learner" *

            *
          • *
          • *

            * "mlp" *

            *
          • *
          • *

            * "xgboost" *

            *
          • *
          *
        • *
        *
      • *
      • *

        * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

        *
          *
        • *

          * Choose your algorithms from this list. *

          *
            *
          • *

            * "cnn-qr" *

            *
          • *
          • *

            * "deepar" *

            *
          • *
          • *

            * "prophet" *

            *
          • *
          • *

            * "arima" *

            *
          • *
          • *

            * "npts" *

            *
          • *
          • *

            * "ets" *

            *
          • *
          *
        • *
        *
      • *
      *

      * NOTE: This method appends the values to the existing list (if any). Use * {@link #setAutoMLAlgorithms(java.util.Collection)} or {@link #withAutoMLAlgorithms(java.util.Collection)} if you * want to override the existing values. *

      * * @param autoMLAlgorithms * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot * job.

      *
        *
      • *

        * For the tabular problem type TabularJobConfig: *

        * *

        * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a * minimum of 1 algorithm. *

        *
        *
          *
        • *

          * In ENSEMBLING mode: *

          *
            *
          • *

            * "catboost" *

            *
          • *
          • *

            * "extra-trees" *

            *
          • *
          • *

            * "fastai" *

            *
          • *
          • *

            * "lightgbm" *

            *
          • *
          • *

            * "linear-learner" *

            *
          • *
          • *

            * "nn-torch" *

            *
          • *
          • *

            * "randomforest" *

            *
          • *
          • *

            * "xgboost" *

            *
          • *
          *
        • *
        • *

          * In HYPERPARAMETER_TUNING mode: *

          *
            *
          • *

            * "linear-learner" *

            *
          • *
          • *

            * "mlp" *

            *
          • *
          • *

            * "xgboost" *

            *
          • *
          *
        • *
        *
      • *
      • *

        * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

        *
          *
        • *

          * Choose your algorithms from this list. *

          *
            *
          • *

            * "cnn-qr" *

            *
          • *
          • *

            * "deepar" *

            *
          • *
          • *

            * "prophet" *

            *
          • *
          • *

            * "arima" *

            *
          • *
          • *

            * "npts" *

            *
          • *
          • *

            * "ets" *

            *
          • *
          *
        • *
        *
      • * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLAlgorithm */ public AutoMLAlgorithmConfig withAutoMLAlgorithms(String... autoMLAlgorithms) { if (this.autoMLAlgorithms == null) { setAutoMLAlgorithms(new java.util.ArrayList(autoMLAlgorithms.length)); } for (String ele : autoMLAlgorithms) { this.autoMLAlgorithms.add(ele); } return this; } /** *

        * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

        *
          *
        • *

          * For the tabular problem type TabularJobConfig: *

          * *

          * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

          *
          *
            *
          • *

            * In ENSEMBLING mode: *

            *
              *
            • *

              * "catboost" *

              *
            • *
            • *

              * "extra-trees" *

              *
            • *
            • *

              * "fastai" *

              *
            • *
            • *

              * "lightgbm" *

              *
            • *
            • *

              * "linear-learner" *

              *
            • *
            • *

              * "nn-torch" *

              *
            • *
            • *

              * "randomforest" *

              *
            • *
            • *

              * "xgboost" *

              *
            • *
            *
          • *
          • *

            * In HYPERPARAMETER_TUNING mode: *

            *
              *
            • *

              * "linear-learner" *

              *
            • *
            • *

              * "mlp" *

              *
            • *
            • *

              * "xgboost" *

              *
            • *
            *
          • *
          *
        • *
        • *

          * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

          *
            *
          • *

            * Choose your algorithms from this list. *

            *
              *
            • *

              * "cnn-qr" *

              *
            • *
            • *

              * "deepar" *

              *
            • *
            • *

              * "prophet" *

              *
            • *
            • *

              * "arima" *

              *
            • *
            • *

              * "npts" *

              *
            • *
            • *

              * "ets" *

              *
            • *
            *
          • *
          *
        • *
        * * @param autoMLAlgorithms * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot * job.

        *
          *
        • *

          * For the tabular problem type TabularJobConfig: *

          * *

          * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a * minimum of 1 algorithm. *

          *
          *
            *
          • *

            * In ENSEMBLING mode: *

            *
              *
            • *

              * "catboost" *

              *
            • *
            • *

              * "extra-trees" *

              *
            • *
            • *

              * "fastai" *

              *
            • *
            • *

              * "lightgbm" *

              *
            • *
            • *

              * "linear-learner" *

              *
            • *
            • *

              * "nn-torch" *

              *
            • *
            • *

              * "randomforest" *

              *
            • *
            • *

              * "xgboost" *

              *
            • *
            *
          • *
          • *

            * In HYPERPARAMETER_TUNING mode: *

            *
              *
            • *

              * "linear-learner" *

              *
            • *
            • *

              * "mlp" *

              *
            • *
            • *

              * "xgboost" *

              *
            • *
            *
          • *
          *
        • *
        • *

          * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

          *
            *
          • *

            * Choose your algorithms from this list. *

            *
              *
            • *

              * "cnn-qr" *

              *
            • *
            • *

              * "deepar" *

              *
            • *
            • *

              * "prophet" *

              *
            • *
            • *

              * "arima" *

              *
            • *
            • *

              * "npts" *

              *
            • *
            • *

              * "ets" *

              *
            • *
            *
          • *
          *
        • * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLAlgorithm */ public AutoMLAlgorithmConfig withAutoMLAlgorithms(java.util.Collection autoMLAlgorithms) { setAutoMLAlgorithms(autoMLAlgorithms); return this; } /** *

          * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. *

          *
            *
          • *

            * For the tabular problem type TabularJobConfig: *

            * *

            * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 * algorithm. *

            *
            *
              *
            • *

              * In ENSEMBLING mode: *

              *
                *
              • *

                * "catboost" *

                *
              • *
              • *

                * "extra-trees" *

                *
              • *
              • *

                * "fastai" *

                *
              • *
              • *

                * "lightgbm" *

                *
              • *
              • *

                * "linear-learner" *

                *
              • *
              • *

                * "nn-torch" *

                *
              • *
              • *

                * "randomforest" *

                *
              • *
              • *

                * "xgboost" *

                *
              • *
              *
            • *
            • *

              * In HYPERPARAMETER_TUNING mode: *

              *
                *
              • *

                * "linear-learner" *

                *
              • *
              • *

                * "mlp" *

                *
              • *
              • *

                * "xgboost" *

                *
              • *
              *
            • *
            *
          • *
          • *

            * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

            *
              *
            • *

              * Choose your algorithms from this list. *

              *
                *
              • *

                * "cnn-qr" *

                *
              • *
              • *

                * "deepar" *

                *
              • *
              • *

                * "prophet" *

                *
              • *
              • *

                * "arima" *

                *
              • *
              • *

                * "npts" *

                *
              • *
              • *

                * "ets" *

                *
              • *
              *
            • *
            *
          • *
          * * @param autoMLAlgorithms * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot * job.

          *
            *
          • *

            * For the tabular problem type TabularJobConfig: *

            * *

            * Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a * minimum of 1 algorithm. *

            *
            *
              *
            • *

              * In ENSEMBLING mode: *

              *
                *
              • *

                * "catboost" *

                *
              • *
              • *

                * "extra-trees" *

                *
              • *
              • *

                * "fastai" *

                *
              • *
              • *

                * "lightgbm" *

                *
              • *
              • *

                * "linear-learner" *

                *
              • *
              • *

                * "nn-torch" *

                *
              • *
              • *

                * "randomforest" *

                *
              • *
              • *

                * "xgboost" *

                *
              • *
              *
            • *
            • *

              * In HYPERPARAMETER_TUNING mode: *

              *
                *
              • *

                * "linear-learner" *

                *
              • *
              • *

                * "mlp" *

                *
              • *
              • *

                * "xgboost" *

                *
              • *
              *
            • *
            *
          • *
          • *

            * For the time-series forecasting problem type TimeSeriesForecastingJobConfig: *

            *
              *
            • *

              * Choose your algorithms from this list. *

              *
                *
              • *

                * "cnn-qr" *

                *
              • *
              • *

                * "deepar" *

                *
              • *
              • *

                * "prophet" *

                *
              • *
              • *

                * "arima" *

                *
              • *
              • *

                * "npts" *

                *
              • *
              • *

                * "ets" *

                *
              • *
              *
            • *
            *
          • * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLAlgorithm */ public AutoMLAlgorithmConfig withAutoMLAlgorithms(AutoMLAlgorithm... autoMLAlgorithms) { java.util.ArrayList autoMLAlgorithmsCopy = new java.util.ArrayList(autoMLAlgorithms.length); for (AutoMLAlgorithm value : autoMLAlgorithms) { autoMLAlgorithmsCopy.add(value.toString()); } if (getAutoMLAlgorithms() == null) { setAutoMLAlgorithms(autoMLAlgorithmsCopy); } else { getAutoMLAlgorithms().addAll(autoMLAlgorithmsCopy); } return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAutoMLAlgorithms() != null) sb.append("AutoMLAlgorithms: ").append(getAutoMLAlgorithms()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof AutoMLAlgorithmConfig == false) return false; AutoMLAlgorithmConfig other = (AutoMLAlgorithmConfig) obj; if (other.getAutoMLAlgorithms() == null ^ this.getAutoMLAlgorithms() == null) return false; if (other.getAutoMLAlgorithms() != null && other.getAutoMLAlgorithms().equals(this.getAutoMLAlgorithms()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAutoMLAlgorithms() == null) ? 0 : getAutoMLAlgorithms().hashCode()); return hashCode; } @Override public AutoMLAlgorithmConfig clone() { try { return (AutoMLAlgorithmConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.AutoMLAlgorithmConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy