All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.AutoMLDataSplitConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* This structure specifies how to split the data into train and validation datasets. *

*

* The validation and training datasets must contain the same headers. For jobs created by calling * CreateAutoMLJob, the validation dataset must be less than 2 GB in size. *

* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class AutoMLDataSplitConfig implements Serializable, Cloneable, StructuredPojo { /** *

* The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. *

*/ private Float validationFraction; /** *

* The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. *

* * @param validationFraction * The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. */ public void setValidationFraction(Float validationFraction) { this.validationFraction = validationFraction; } /** *

* The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. *

* * @return The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. */ public Float getValidationFraction() { return this.validationFraction; } /** *

* The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for * validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting * this value to be less than 0.5. *

* * @param validationFraction * The validation fraction (optional) is a float that specifies the portion of the training dataset to be * used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We * recommend setting this value to be less than 0.5. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLDataSplitConfig withValidationFraction(Float validationFraction) { setValidationFraction(validationFraction); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getValidationFraction() != null) sb.append("ValidationFraction: ").append(getValidationFraction()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof AutoMLDataSplitConfig == false) return false; AutoMLDataSplitConfig other = (AutoMLDataSplitConfig) obj; if (other.getValidationFraction() == null ^ this.getValidationFraction() == null) return false; if (other.getValidationFraction() != null && other.getValidationFraction().equals(this.getValidationFraction()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getValidationFraction() == null) ? 0 : getValidationFraction().hashCode()); return hashCode; } @Override public AutoMLDataSplitConfig clone() { try { return (AutoMLDataSplitConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.AutoMLDataSplitConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy