All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.AutoMLJobConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* A collection of settings used for an AutoML job. *

* * @see AWS API * Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class AutoMLJobConfig implements Serializable, Cloneable, StructuredPojo { /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

*/ private AutoMLJobCompletionCriteria completionCriteria; /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

*/ private AutoMLSecurityConfig securityConfig; /** *

* The configuration for generating a candidate for an AutoML job (optional). *

*/ private AutoMLCandidateGenerationConfig candidateGenerationConfig; /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

*/ private AutoMLDataSplitConfig dataSplitConfig; /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

*/ private String mode; /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* * @param completionCriteria * How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. */ public void setCompletionCriteria(AutoMLJobCompletionCriteria completionCriteria) { this.completionCriteria = completionCriteria; } /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* * @return How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. */ public AutoMLJobCompletionCriteria getCompletionCriteria() { return this.completionCriteria; } /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* * @param completionCriteria * How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLJobConfig withCompletionCriteria(AutoMLJobCompletionCriteria completionCriteria) { setCompletionCriteria(completionCriteria); return this; } /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* * @param securityConfig * The security configuration for traffic encryption or Amazon VPC settings. */ public void setSecurityConfig(AutoMLSecurityConfig securityConfig) { this.securityConfig = securityConfig; } /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* * @return The security configuration for traffic encryption or Amazon VPC settings. */ public AutoMLSecurityConfig getSecurityConfig() { return this.securityConfig; } /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* * @param securityConfig * The security configuration for traffic encryption or Amazon VPC settings. * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLJobConfig withSecurityConfig(AutoMLSecurityConfig securityConfig) { setSecurityConfig(securityConfig); return this; } /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* * @param candidateGenerationConfig * The configuration for generating a candidate for an AutoML job (optional). */ public void setCandidateGenerationConfig(AutoMLCandidateGenerationConfig candidateGenerationConfig) { this.candidateGenerationConfig = candidateGenerationConfig; } /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* * @return The configuration for generating a candidate for an AutoML job (optional). */ public AutoMLCandidateGenerationConfig getCandidateGenerationConfig() { return this.candidateGenerationConfig; } /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* * @param candidateGenerationConfig * The configuration for generating a candidate for an AutoML job (optional). * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLJobConfig withCandidateGenerationConfig(AutoMLCandidateGenerationConfig candidateGenerationConfig) { setCandidateGenerationConfig(candidateGenerationConfig); return this; } /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* * @param dataSplitConfig * The configuration for splitting the input training dataset.

*

* Type: AutoMLDataSplitConfig */ public void setDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig) { this.dataSplitConfig = dataSplitConfig; } /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* * @return The configuration for splitting the input training dataset.

*

* Type: AutoMLDataSplitConfig */ public AutoMLDataSplitConfig getDataSplitConfig() { return this.dataSplitConfig; } /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* * @param dataSplitConfig * The configuration for splitting the input training dataset.

*

* Type: AutoMLDataSplitConfig * @return Returns a reference to this object so that method calls can be chained together. */ public AutoMLJobConfig withDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig) { setDataSplitConfig(dataSplitConfig); return this; } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

* * @param mode * The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @see AutoMLMode */ public void setMode(String mode) { this.mode = mode; } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

* * @return The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @see AutoMLMode */ public String getMode() { return this.mode; } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

* * @param mode * The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLMode */ public AutoMLJobConfig withMode(String mode) { setMode(mode); return this; } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

* * @param mode * The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLMode */ public AutoMLJobConfig withMode(AutoMLMode mode) { this.mode = mode.toString(); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getCompletionCriteria() != null) sb.append("CompletionCriteria: ").append(getCompletionCriteria()).append(","); if (getSecurityConfig() != null) sb.append("SecurityConfig: ").append(getSecurityConfig()).append(","); if (getCandidateGenerationConfig() != null) sb.append("CandidateGenerationConfig: ").append(getCandidateGenerationConfig()).append(","); if (getDataSplitConfig() != null) sb.append("DataSplitConfig: ").append(getDataSplitConfig()).append(","); if (getMode() != null) sb.append("Mode: ").append(getMode()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof AutoMLJobConfig == false) return false; AutoMLJobConfig other = (AutoMLJobConfig) obj; if (other.getCompletionCriteria() == null ^ this.getCompletionCriteria() == null) return false; if (other.getCompletionCriteria() != null && other.getCompletionCriteria().equals(this.getCompletionCriteria()) == false) return false; if (other.getSecurityConfig() == null ^ this.getSecurityConfig() == null) return false; if (other.getSecurityConfig() != null && other.getSecurityConfig().equals(this.getSecurityConfig()) == false) return false; if (other.getCandidateGenerationConfig() == null ^ this.getCandidateGenerationConfig() == null) return false; if (other.getCandidateGenerationConfig() != null && other.getCandidateGenerationConfig().equals(this.getCandidateGenerationConfig()) == false) return false; if (other.getDataSplitConfig() == null ^ this.getDataSplitConfig() == null) return false; if (other.getDataSplitConfig() != null && other.getDataSplitConfig().equals(this.getDataSplitConfig()) == false) return false; if (other.getMode() == null ^ this.getMode() == null) return false; if (other.getMode() != null && other.getMode().equals(this.getMode()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getCompletionCriteria() == null) ? 0 : getCompletionCriteria().hashCode()); hashCode = prime * hashCode + ((getSecurityConfig() == null) ? 0 : getSecurityConfig().hashCode()); hashCode = prime * hashCode + ((getCandidateGenerationConfig() == null) ? 0 : getCandidateGenerationConfig().hashCode()); hashCode = prime * hashCode + ((getDataSplitConfig() == null) ? 0 : getDataSplitConfig().hashCode()); hashCode = prime * hashCode + ((getMode() == null) ? 0 : getMode().hashCode()); return hashCode; } @Override public AutoMLJobConfig clone() { try { return (AutoMLJobConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.AutoMLJobConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy