All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.CreateAutoMLJobRequest Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

There is a newer version: 1.12.782
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API
 *      Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreateAutoMLJobRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* Identifies an Autopilot job. The name must be unique to your account and is case insensitive. *

*/ private String autoMLJobName; /** *

* An array of channel objects that describes the input data and its location. Each channel is a named input source. * Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required * for the training dataset. There is not a minimum number of rows required for the validation dataset. *

*/ private java.util.List inputDataConfig; /** *

* Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. * Format(s) supported: CSV. *

*/ private AutoMLOutputDataConfig outputDataConfig; /** *

* Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. *

*/ private String problemType; /** *

* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective * metric depends on the problem type. See AutoMLJobObjective for the default values. *

*/ private AutoMLJobObjective autoMLJobObjective; /** *

* A collection of settings used to configure an AutoML job. *

*/ private AutoMLJobConfig autoMLJobConfig; /** *

* The ARN of the role that is used to access the data. *

*/ private String roleArn; /** *

* Generates possible candidates without training the models. A candidate is a combination of data preprocessors, * algorithms, and algorithm parameter settings. *

*/ private Boolean generateCandidateDefinitionsOnly; /** *

* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, * for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. * Tag keys must be unique per resource. *

*/ private java.util.List tags; /** *

* Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. *

*/ private ModelDeployConfig modelDeployConfig; /** *

* Identifies an Autopilot job. The name must be unique to your account and is case insensitive. *

* * @param autoMLJobName * Identifies an Autopilot job. The name must be unique to your account and is case insensitive. */ public void setAutoMLJobName(String autoMLJobName) { this.autoMLJobName = autoMLJobName; } /** *

* Identifies an Autopilot job. The name must be unique to your account and is case insensitive. *

* * @return Identifies an Autopilot job. The name must be unique to your account and is case insensitive. */ public String getAutoMLJobName() { return this.autoMLJobName; } /** *

* Identifies an Autopilot job. The name must be unique to your account and is case insensitive. *

* * @param autoMLJobName * Identifies an Autopilot job. The name must be unique to your account and is case insensitive. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withAutoMLJobName(String autoMLJobName) { setAutoMLJobName(autoMLJobName); return this; } /** *

* An array of channel objects that describes the input data and its location. Each channel is a named input source. * Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required * for the training dataset. There is not a minimum number of rows required for the validation dataset. *

* * @return An array of channel objects that describes the input data and its location. Each channel is a named input * source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is * required for the training dataset. There is not a minimum number of rows required for the validation * dataset. */ public java.util.List getInputDataConfig() { return inputDataConfig; } /** *

* An array of channel objects that describes the input data and its location. Each channel is a named input source. * Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required * for the training dataset. There is not a minimum number of rows required for the validation dataset. *

* * @param inputDataConfig * An array of channel objects that describes the input data and its location. Each channel is a named input * source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is * required for the training dataset. There is not a minimum number of rows required for the validation * dataset. */ public void setInputDataConfig(java.util.Collection inputDataConfig) { if (inputDataConfig == null) { this.inputDataConfig = null; return; } this.inputDataConfig = new java.util.ArrayList(inputDataConfig); } /** *

* An array of channel objects that describes the input data and its location. Each channel is a named input source. * Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required * for the training dataset. There is not a minimum number of rows required for the validation dataset. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setInputDataConfig(java.util.Collection)} or {@link #withInputDataConfig(java.util.Collection)} if you * want to override the existing values. *

* * @param inputDataConfig * An array of channel objects that describes the input data and its location. Each channel is a named input * source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is * required for the training dataset. There is not a minimum number of rows required for the validation * dataset. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withInputDataConfig(AutoMLChannel... inputDataConfig) { if (this.inputDataConfig == null) { setInputDataConfig(new java.util.ArrayList(inputDataConfig.length)); } for (AutoMLChannel ele : inputDataConfig) { this.inputDataConfig.add(ele); } return this; } /** *

* An array of channel objects that describes the input data and its location. Each channel is a named input source. * Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required * for the training dataset. There is not a minimum number of rows required for the validation dataset. *

* * @param inputDataConfig * An array of channel objects that describes the input data and its location. Each channel is a named input * source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is * required for the training dataset. There is not a minimum number of rows required for the validation * dataset. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withInputDataConfig(java.util.Collection inputDataConfig) { setInputDataConfig(inputDataConfig); return this; } /** *

* Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. * Format(s) supported: CSV. *

* * @param outputDataConfig * Provides information about encryption and the Amazon S3 output path needed to store artifacts from an * AutoML job. Format(s) supported: CSV. */ public void setOutputDataConfig(AutoMLOutputDataConfig outputDataConfig) { this.outputDataConfig = outputDataConfig; } /** *

* Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. * Format(s) supported: CSV. *

* * @return Provides information about encryption and the Amazon S3 output path needed to store artifacts from an * AutoML job. Format(s) supported: CSV. */ public AutoMLOutputDataConfig getOutputDataConfig() { return this.outputDataConfig; } /** *

* Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. * Format(s) supported: CSV. *

* * @param outputDataConfig * Provides information about encryption and the Amazon S3 output path needed to store artifacts from an * AutoML job. Format(s) supported: CSV. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withOutputDataConfig(AutoMLOutputDataConfig outputDataConfig) { setOutputDataConfig(outputDataConfig); return this; } /** *

* Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. *

* * @param problemType * Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types. * @see ProblemType */ public void setProblemType(String problemType) { this.problemType = problemType; } /** *

* Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. *

* * @return Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. * @see ProblemType */ public String getProblemType() { return this.problemType; } /** *

* Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. *

* * @param problemType * Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types. * @return Returns a reference to this object so that method calls can be chained together. * @see ProblemType */ public CreateAutoMLJobRequest withProblemType(String problemType) { setProblemType(problemType); return this; } /** *

* Defines the type of supervised learning problem available for the candidates. For more information, see * SageMaker Autopilot problem types. *

* * @param problemType * Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types. * @return Returns a reference to this object so that method calls can be chained together. * @see ProblemType */ public CreateAutoMLJobRequest withProblemType(ProblemType problemType) { this.problemType = problemType.toString(); return this; } /** *

* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective * metric depends on the problem type. See AutoMLJobObjective for the default values. *

* * @param autoMLJobObjective * Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default * objective metric depends on the problem type. See AutoMLJobObjective for the default values. */ public void setAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective) { this.autoMLJobObjective = autoMLJobObjective; } /** *

* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective * metric depends on the problem type. See AutoMLJobObjective for the default values. *

* * @return Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default * objective metric depends on the problem type. See AutoMLJobObjective for the default values. */ public AutoMLJobObjective getAutoMLJobObjective() { return this.autoMLJobObjective; } /** *

* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective * metric depends on the problem type. See AutoMLJobObjective for the default values. *

* * @param autoMLJobObjective * Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default * objective metric depends on the problem type. See AutoMLJobObjective for the default values. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective) { setAutoMLJobObjective(autoMLJobObjective); return this; } /** *

* A collection of settings used to configure an AutoML job. *

* * @param autoMLJobConfig * A collection of settings used to configure an AutoML job. */ public void setAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig) { this.autoMLJobConfig = autoMLJobConfig; } /** *

* A collection of settings used to configure an AutoML job. *

* * @return A collection of settings used to configure an AutoML job. */ public AutoMLJobConfig getAutoMLJobConfig() { return this.autoMLJobConfig; } /** *

* A collection of settings used to configure an AutoML job. *

* * @param autoMLJobConfig * A collection of settings used to configure an AutoML job. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig) { setAutoMLJobConfig(autoMLJobConfig); return this; } /** *

* The ARN of the role that is used to access the data. *

* * @param roleArn * The ARN of the role that is used to access the data. */ public void setRoleArn(String roleArn) { this.roleArn = roleArn; } /** *

* The ARN of the role that is used to access the data. *

* * @return The ARN of the role that is used to access the data. */ public String getRoleArn() { return this.roleArn; } /** *

* The ARN of the role that is used to access the data. *

* * @param roleArn * The ARN of the role that is used to access the data. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withRoleArn(String roleArn) { setRoleArn(roleArn); return this; } /** *

* Generates possible candidates without training the models. A candidate is a combination of data preprocessors, * algorithms, and algorithm parameter settings. *

* * @param generateCandidateDefinitionsOnly * Generates possible candidates without training the models. A candidate is a combination of data * preprocessors, algorithms, and algorithm parameter settings. */ public void setGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly) { this.generateCandidateDefinitionsOnly = generateCandidateDefinitionsOnly; } /** *

* Generates possible candidates without training the models. A candidate is a combination of data preprocessors, * algorithms, and algorithm parameter settings. *

* * @return Generates possible candidates without training the models. A candidate is a combination of data * preprocessors, algorithms, and algorithm parameter settings. */ public Boolean getGenerateCandidateDefinitionsOnly() { return this.generateCandidateDefinitionsOnly; } /** *

* Generates possible candidates without training the models. A candidate is a combination of data preprocessors, * algorithms, and algorithm parameter settings. *

* * @param generateCandidateDefinitionsOnly * Generates possible candidates without training the models. A candidate is a combination of data * preprocessors, algorithms, and algorithm parameter settings. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly) { setGenerateCandidateDefinitionsOnly(generateCandidateDefinitionsOnly); return this; } /** *

* Generates possible candidates without training the models. A candidate is a combination of data preprocessors, * algorithms, and algorithm parameter settings. *

* * @return Generates possible candidates without training the models. A candidate is a combination of data * preprocessors, algorithms, and algorithm parameter settings. */ public Boolean isGenerateCandidateDefinitionsOnly() { return this.generateCandidateDefinitionsOnly; } /** *

* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, * for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. * Tag keys must be unique per resource. *

* * @return An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in * different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web * ServicesResources. Tag keys must be unique per resource. */ public java.util.List getTags() { return tags; } /** *

* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, * for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. * Tag keys must be unique per resource. *

* * @param tags * An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in * different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web * ServicesResources. Tag keys must be unique per resource. */ public void setTags(java.util.Collection tags) { if (tags == null) { this.tags = null; return; } this.tags = new java.util.ArrayList(tags); } /** *

* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, * for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. * Tag keys must be unique per resource. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setTags(java.util.Collection)} or {@link #withTags(java.util.Collection)} if you want to override the * existing values. *

* * @param tags * An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in * different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web * ServicesResources. Tag keys must be unique per resource. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withTags(Tag... tags) { if (this.tags == null) { setTags(new java.util.ArrayList(tags.length)); } for (Tag ele : tags) { this.tags.add(ele); } return this; } /** *

* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, * for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. * Tag keys must be unique per resource. *

* * @param tags * An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in * different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web * ServicesResources. Tag keys must be unique per resource. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withTags(java.util.Collection tags) { setTags(tags); return this; } /** *

* Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. *

* * @param modelDeployConfig * Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. */ public void setModelDeployConfig(ModelDeployConfig modelDeployConfig) { this.modelDeployConfig = modelDeployConfig; } /** *

* Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. *

* * @return Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. */ public ModelDeployConfig getModelDeployConfig() { return this.modelDeployConfig; } /** *

* Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. *

* * @param modelDeployConfig * Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateAutoMLJobRequest withModelDeployConfig(ModelDeployConfig modelDeployConfig) { setModelDeployConfig(modelDeployConfig); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAutoMLJobName() != null) sb.append("AutoMLJobName: ").append(getAutoMLJobName()).append(","); if (getInputDataConfig() != null) sb.append("InputDataConfig: ").append(getInputDataConfig()).append(","); if (getOutputDataConfig() != null) sb.append("OutputDataConfig: ").append(getOutputDataConfig()).append(","); if (getProblemType() != null) sb.append("ProblemType: ").append(getProblemType()).append(","); if (getAutoMLJobObjective() != null) sb.append("AutoMLJobObjective: ").append(getAutoMLJobObjective()).append(","); if (getAutoMLJobConfig() != null) sb.append("AutoMLJobConfig: ").append(getAutoMLJobConfig()).append(","); if (getRoleArn() != null) sb.append("RoleArn: ").append(getRoleArn()).append(","); if (getGenerateCandidateDefinitionsOnly() != null) sb.append("GenerateCandidateDefinitionsOnly: ").append(getGenerateCandidateDefinitionsOnly()).append(","); if (getTags() != null) sb.append("Tags: ").append(getTags()).append(","); if (getModelDeployConfig() != null) sb.append("ModelDeployConfig: ").append(getModelDeployConfig()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateAutoMLJobRequest == false) return false; CreateAutoMLJobRequest other = (CreateAutoMLJobRequest) obj; if (other.getAutoMLJobName() == null ^ this.getAutoMLJobName() == null) return false; if (other.getAutoMLJobName() != null && other.getAutoMLJobName().equals(this.getAutoMLJobName()) == false) return false; if (other.getInputDataConfig() == null ^ this.getInputDataConfig() == null) return false; if (other.getInputDataConfig() != null && other.getInputDataConfig().equals(this.getInputDataConfig()) == false) return false; if (other.getOutputDataConfig() == null ^ this.getOutputDataConfig() == null) return false; if (other.getOutputDataConfig() != null && other.getOutputDataConfig().equals(this.getOutputDataConfig()) == false) return false; if (other.getProblemType() == null ^ this.getProblemType() == null) return false; if (other.getProblemType() != null && other.getProblemType().equals(this.getProblemType()) == false) return false; if (other.getAutoMLJobObjective() == null ^ this.getAutoMLJobObjective() == null) return false; if (other.getAutoMLJobObjective() != null && other.getAutoMLJobObjective().equals(this.getAutoMLJobObjective()) == false) return false; if (other.getAutoMLJobConfig() == null ^ this.getAutoMLJobConfig() == null) return false; if (other.getAutoMLJobConfig() != null && other.getAutoMLJobConfig().equals(this.getAutoMLJobConfig()) == false) return false; if (other.getRoleArn() == null ^ this.getRoleArn() == null) return false; if (other.getRoleArn() != null && other.getRoleArn().equals(this.getRoleArn()) == false) return false; if (other.getGenerateCandidateDefinitionsOnly() == null ^ this.getGenerateCandidateDefinitionsOnly() == null) return false; if (other.getGenerateCandidateDefinitionsOnly() != null && other.getGenerateCandidateDefinitionsOnly().equals(this.getGenerateCandidateDefinitionsOnly()) == false) return false; if (other.getTags() == null ^ this.getTags() == null) return false; if (other.getTags() != null && other.getTags().equals(this.getTags()) == false) return false; if (other.getModelDeployConfig() == null ^ this.getModelDeployConfig() == null) return false; if (other.getModelDeployConfig() != null && other.getModelDeployConfig().equals(this.getModelDeployConfig()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAutoMLJobName() == null) ? 0 : getAutoMLJobName().hashCode()); hashCode = prime * hashCode + ((getInputDataConfig() == null) ? 0 : getInputDataConfig().hashCode()); hashCode = prime * hashCode + ((getOutputDataConfig() == null) ? 0 : getOutputDataConfig().hashCode()); hashCode = prime * hashCode + ((getProblemType() == null) ? 0 : getProblemType().hashCode()); hashCode = prime * hashCode + ((getAutoMLJobObjective() == null) ? 0 : getAutoMLJobObjective().hashCode()); hashCode = prime * hashCode + ((getAutoMLJobConfig() == null) ? 0 : getAutoMLJobConfig().hashCode()); hashCode = prime * hashCode + ((getRoleArn() == null) ? 0 : getRoleArn().hashCode()); hashCode = prime * hashCode + ((getGenerateCandidateDefinitionsOnly() == null) ? 0 : getGenerateCandidateDefinitionsOnly().hashCode()); hashCode = prime * hashCode + ((getTags() == null) ? 0 : getTags().hashCode()); hashCode = prime * hashCode + ((getModelDeployConfig() == null) ? 0 : getModelDeployConfig().hashCode()); return hashCode; } @Override public CreateAutoMLJobRequest clone() { return (CreateAutoMLJobRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy