com.amazonaws.services.sagemaker.model.DeploymentRecommendation Maven / Gradle / Ivy
Show all versions of aws-java-sdk-sagemaker Show documentation
/*
* Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
* the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package com.amazonaws.services.sagemaker.model;
import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;
/**
*
* A set of recommended deployment configurations for the model. To get more advanced recommendations, see CreateInferenceRecommendationsJob to create an inference recommendation job.
*
*
* @see AWS
* API Documentation
*/
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class DeploymentRecommendation implements Serializable, Cloneable, StructuredPojo {
/**
*
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is unable to
* provide a default recommendation for the model using the information provided. If the deployment status is
* IN_PROGRESS
, retry your API call after a few seconds to get a COMPLETED
deployment
* recommendation.
*
*/
private String recommendationStatus;
/**
*
* A list of RealTimeInferenceRecommendation items.
*
*/
private java.util.List realTimeInferenceRecommendations;
/**
*
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is unable to
* provide a default recommendation for the model using the information provided. If the deployment status is
* IN_PROGRESS
, retry your API call after a few seconds to get a COMPLETED
deployment
* recommendation.
*
*
* @param recommendationStatus
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is
* unable to provide a default recommendation for the model using the information provided. If the deployment
* status is IN_PROGRESS
, retry your API call after a few seconds to get a
* COMPLETED
deployment recommendation.
* @see RecommendationStatus
*/
public void setRecommendationStatus(String recommendationStatus) {
this.recommendationStatus = recommendationStatus;
}
/**
*
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is unable to
* provide a default recommendation for the model using the information provided. If the deployment status is
* IN_PROGRESS
, retry your API call after a few seconds to get a COMPLETED
deployment
* recommendation.
*
*
* @return Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is
* unable to provide a default recommendation for the model using the information provided. If the
* deployment status is IN_PROGRESS
, retry your API call after a few seconds to get a
* COMPLETED
deployment recommendation.
* @see RecommendationStatus
*/
public String getRecommendationStatus() {
return this.recommendationStatus;
}
/**
*
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is unable to
* provide a default recommendation for the model using the information provided. If the deployment status is
* IN_PROGRESS
, retry your API call after a few seconds to get a COMPLETED
deployment
* recommendation.
*
*
* @param recommendationStatus
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is
* unable to provide a default recommendation for the model using the information provided. If the deployment
* status is IN_PROGRESS
, retry your API call after a few seconds to get a
* COMPLETED
deployment recommendation.
* @return Returns a reference to this object so that method calls can be chained together.
* @see RecommendationStatus
*/
public DeploymentRecommendation withRecommendationStatus(String recommendationStatus) {
setRecommendationStatus(recommendationStatus);
return this;
}
/**
*
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is unable to
* provide a default recommendation for the model using the information provided. If the deployment status is
* IN_PROGRESS
, retry your API call after a few seconds to get a COMPLETED
deployment
* recommendation.
*
*
* @param recommendationStatus
* Status of the deployment recommendation. The status NOT_APPLICABLE
means that SageMaker is
* unable to provide a default recommendation for the model using the information provided. If the deployment
* status is IN_PROGRESS
, retry your API call after a few seconds to get a
* COMPLETED
deployment recommendation.
* @return Returns a reference to this object so that method calls can be chained together.
* @see RecommendationStatus
*/
public DeploymentRecommendation withRecommendationStatus(RecommendationStatus recommendationStatus) {
this.recommendationStatus = recommendationStatus.toString();
return this;
}
/**
*
* A list of RealTimeInferenceRecommendation items.
*
*
* @return A list of RealTimeInferenceRecommendation items.
*/
public java.util.List getRealTimeInferenceRecommendations() {
return realTimeInferenceRecommendations;
}
/**
*
* A list of RealTimeInferenceRecommendation items.
*
*
* @param realTimeInferenceRecommendations
* A list of RealTimeInferenceRecommendation items.
*/
public void setRealTimeInferenceRecommendations(java.util.Collection realTimeInferenceRecommendations) {
if (realTimeInferenceRecommendations == null) {
this.realTimeInferenceRecommendations = null;
return;
}
this.realTimeInferenceRecommendations = new java.util.ArrayList(realTimeInferenceRecommendations);
}
/**
*
* A list of RealTimeInferenceRecommendation items.
*
*
* NOTE: This method appends the values to the existing list (if any). Use
* {@link #setRealTimeInferenceRecommendations(java.util.Collection)} or
* {@link #withRealTimeInferenceRecommendations(java.util.Collection)} if you want to override the existing values.
*
*
* @param realTimeInferenceRecommendations
* A list of RealTimeInferenceRecommendation items.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public DeploymentRecommendation withRealTimeInferenceRecommendations(RealTimeInferenceRecommendation... realTimeInferenceRecommendations) {
if (this.realTimeInferenceRecommendations == null) {
setRealTimeInferenceRecommendations(new java.util.ArrayList(realTimeInferenceRecommendations.length));
}
for (RealTimeInferenceRecommendation ele : realTimeInferenceRecommendations) {
this.realTimeInferenceRecommendations.add(ele);
}
return this;
}
/**
*
* A list of RealTimeInferenceRecommendation items.
*
*
* @param realTimeInferenceRecommendations
* A list of RealTimeInferenceRecommendation items.
* @return Returns a reference to this object so that method calls can be chained together.
*/
public DeploymentRecommendation withRealTimeInferenceRecommendations(java.util.Collection realTimeInferenceRecommendations) {
setRealTimeInferenceRecommendations(realTimeInferenceRecommendations);
return this;
}
/**
* Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be
* redacted from this string using a placeholder value.
*
* @return A string representation of this object.
*
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("{");
if (getRecommendationStatus() != null)
sb.append("RecommendationStatus: ").append(getRecommendationStatus()).append(",");
if (getRealTimeInferenceRecommendations() != null)
sb.append("RealTimeInferenceRecommendations: ").append(getRealTimeInferenceRecommendations());
sb.append("}");
return sb.toString();
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (obj instanceof DeploymentRecommendation == false)
return false;
DeploymentRecommendation other = (DeploymentRecommendation) obj;
if (other.getRecommendationStatus() == null ^ this.getRecommendationStatus() == null)
return false;
if (other.getRecommendationStatus() != null && other.getRecommendationStatus().equals(this.getRecommendationStatus()) == false)
return false;
if (other.getRealTimeInferenceRecommendations() == null ^ this.getRealTimeInferenceRecommendations() == null)
return false;
if (other.getRealTimeInferenceRecommendations() != null
&& other.getRealTimeInferenceRecommendations().equals(this.getRealTimeInferenceRecommendations()) == false)
return false;
return true;
}
@Override
public int hashCode() {
final int prime = 31;
int hashCode = 1;
hashCode = prime * hashCode + ((getRecommendationStatus() == null) ? 0 : getRecommendationStatus().hashCode());
hashCode = prime * hashCode + ((getRealTimeInferenceRecommendations() == null) ? 0 : getRealTimeInferenceRecommendations().hashCode());
return hashCode;
}
@Override
public DeploymentRecommendation clone() {
try {
return (DeploymentRecommendation) super.clone();
} catch (CloneNotSupportedException e) {
throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e);
}
}
@com.amazonaws.annotation.SdkInternalApi
@Override
public void marshall(ProtocolMarshaller protocolMarshaller) {
com.amazonaws.services.sagemaker.model.transform.DeploymentRecommendationMarshaller.getInstance().marshall(this, protocolMarshaller);
}
}