All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.DeploymentRecommendation Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* A set of recommended deployment configurations for the model. To get more advanced recommendations, see CreateInferenceRecommendationsJob to create an inference recommendation job. *

* * @see AWS * API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class DeploymentRecommendation implements Serializable, Cloneable, StructuredPojo { /** *

* Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to * provide a default recommendation for the model using the information provided. If the deployment status is * IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment * recommendation. *

*/ private String recommendationStatus; /** *

* A list of RealTimeInferenceRecommendation items. *

*/ private java.util.List realTimeInferenceRecommendations; /** *

* Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to * provide a default recommendation for the model using the information provided. If the deployment status is * IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment * recommendation. *

* * @param recommendationStatus * Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is * unable to provide a default recommendation for the model using the information provided. If the deployment * status is IN_PROGRESS, retry your API call after a few seconds to get a * COMPLETED deployment recommendation. * @see RecommendationStatus */ public void setRecommendationStatus(String recommendationStatus) { this.recommendationStatus = recommendationStatus; } /** *

* Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to * provide a default recommendation for the model using the information provided. If the deployment status is * IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment * recommendation. *

* * @return Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is * unable to provide a default recommendation for the model using the information provided. If the * deployment status is IN_PROGRESS, retry your API call after a few seconds to get a * COMPLETED deployment recommendation. * @see RecommendationStatus */ public String getRecommendationStatus() { return this.recommendationStatus; } /** *

* Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to * provide a default recommendation for the model using the information provided. If the deployment status is * IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment * recommendation. *

* * @param recommendationStatus * Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is * unable to provide a default recommendation for the model using the information provided. If the deployment * status is IN_PROGRESS, retry your API call after a few seconds to get a * COMPLETED deployment recommendation. * @return Returns a reference to this object so that method calls can be chained together. * @see RecommendationStatus */ public DeploymentRecommendation withRecommendationStatus(String recommendationStatus) { setRecommendationStatus(recommendationStatus); return this; } /** *

* Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is unable to * provide a default recommendation for the model using the information provided. If the deployment status is * IN_PROGRESS, retry your API call after a few seconds to get a COMPLETED deployment * recommendation. *

* * @param recommendationStatus * Status of the deployment recommendation. The status NOT_APPLICABLE means that SageMaker is * unable to provide a default recommendation for the model using the information provided. If the deployment * status is IN_PROGRESS, retry your API call after a few seconds to get a * COMPLETED deployment recommendation. * @return Returns a reference to this object so that method calls can be chained together. * @see RecommendationStatus */ public DeploymentRecommendation withRecommendationStatus(RecommendationStatus recommendationStatus) { this.recommendationStatus = recommendationStatus.toString(); return this; } /** *

* A list of RealTimeInferenceRecommendation items. *

* * @return A list of RealTimeInferenceRecommendation items. */ public java.util.List getRealTimeInferenceRecommendations() { return realTimeInferenceRecommendations; } /** *

* A list of RealTimeInferenceRecommendation items. *

* * @param realTimeInferenceRecommendations * A list of RealTimeInferenceRecommendation items. */ public void setRealTimeInferenceRecommendations(java.util.Collection realTimeInferenceRecommendations) { if (realTimeInferenceRecommendations == null) { this.realTimeInferenceRecommendations = null; return; } this.realTimeInferenceRecommendations = new java.util.ArrayList(realTimeInferenceRecommendations); } /** *

* A list of RealTimeInferenceRecommendation items. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setRealTimeInferenceRecommendations(java.util.Collection)} or * {@link #withRealTimeInferenceRecommendations(java.util.Collection)} if you want to override the existing values. *

* * @param realTimeInferenceRecommendations * A list of RealTimeInferenceRecommendation items. * @return Returns a reference to this object so that method calls can be chained together. */ public DeploymentRecommendation withRealTimeInferenceRecommendations(RealTimeInferenceRecommendation... realTimeInferenceRecommendations) { if (this.realTimeInferenceRecommendations == null) { setRealTimeInferenceRecommendations(new java.util.ArrayList(realTimeInferenceRecommendations.length)); } for (RealTimeInferenceRecommendation ele : realTimeInferenceRecommendations) { this.realTimeInferenceRecommendations.add(ele); } return this; } /** *

* A list of RealTimeInferenceRecommendation items. *

* * @param realTimeInferenceRecommendations * A list of RealTimeInferenceRecommendation items. * @return Returns a reference to this object so that method calls can be chained together. */ public DeploymentRecommendation withRealTimeInferenceRecommendations(java.util.Collection realTimeInferenceRecommendations) { setRealTimeInferenceRecommendations(realTimeInferenceRecommendations); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getRecommendationStatus() != null) sb.append("RecommendationStatus: ").append(getRecommendationStatus()).append(","); if (getRealTimeInferenceRecommendations() != null) sb.append("RealTimeInferenceRecommendations: ").append(getRealTimeInferenceRecommendations()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof DeploymentRecommendation == false) return false; DeploymentRecommendation other = (DeploymentRecommendation) obj; if (other.getRecommendationStatus() == null ^ this.getRecommendationStatus() == null) return false; if (other.getRecommendationStatus() != null && other.getRecommendationStatus().equals(this.getRecommendationStatus()) == false) return false; if (other.getRealTimeInferenceRecommendations() == null ^ this.getRealTimeInferenceRecommendations() == null) return false; if (other.getRealTimeInferenceRecommendations() != null && other.getRealTimeInferenceRecommendations().equals(this.getRealTimeInferenceRecommendations()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getRecommendationStatus() == null) ? 0 : getRecommendationStatus().hashCode()); hashCode = prime * hashCode + ((getRealTimeInferenceRecommendations() == null) ? 0 : getRealTimeInferenceRecommendations().hashCode()); return hashCode; } @Override public DeploymentRecommendation clone() { try { return (DeploymentRecommendation) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.DeploymentRecommendationMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy