All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.sagemaker.model.HyperParameterTuningInstanceConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

The newest version!
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.sagemaker.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These * resources include compute instances and storage volumes. Specify one or more compute instance configurations and * allocation strategies to select resources (optional). *

* * @see AWS API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class HyperParameterTuningInstanceConfig implements Serializable, Cloneable, StructuredPojo { /** *

* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) * instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: * ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type * descriptions. *

*/ private String instanceType; /** *

* The number of instances of the type specified by InstanceType. Choose an instance count larger than * 1 for distributed training algorithms. See Step 2: Launch a SageMaker * Distributed Training Job Using the SageMaker Python SDK for more information. *

*/ private Integer instanceCount; /** *

* The volume size in GB of the data to be processed for hyperparameter optimization (optional). *

*/ private Integer volumeSizeInGB; /** *

* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) * instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: * ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type * descriptions. *

* * @param instanceType * The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no * GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) * instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance * type descriptions. * @see TrainingInstanceType */ public void setInstanceType(String instanceType) { this.instanceType = instanceType; } /** *

* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) * instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: * ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type * descriptions. *

* * @return The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose * (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) * instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance * type descriptions. * @see TrainingInstanceType */ public String getInstanceType() { return this.instanceType; } /** *

* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) * instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: * ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type * descriptions. *

* * @param instanceType * The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no * GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) * instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance * type descriptions. * @return Returns a reference to this object so that method calls can be chained together. * @see TrainingInstanceType */ public HyperParameterTuningInstanceConfig withInstanceType(String instanceType) { setInstanceType(instanceType); return this; } /** *

* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) * instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: * ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type * descriptions. *

* * @param instanceType * The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no * GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) * instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance * type descriptions. * @return Returns a reference to this object so that method calls can be chained together. * @see TrainingInstanceType */ public HyperParameterTuningInstanceConfig withInstanceType(TrainingInstanceType instanceType) { this.instanceType = instanceType.toString(); return this; } /** *

* The number of instances of the type specified by InstanceType. Choose an instance count larger than * 1 for distributed training algorithms. See Step 2: Launch a SageMaker * Distributed Training Job Using the SageMaker Python SDK for more information. *

* * @param instanceCount * The number of instances of the type specified by InstanceType. Choose an instance count * larger than 1 for distributed training algorithms. See Step 2: Launch a * SageMaker Distributed Training Job Using the SageMaker Python SDK for more information. */ public void setInstanceCount(Integer instanceCount) { this.instanceCount = instanceCount; } /** *

* The number of instances of the type specified by InstanceType. Choose an instance count larger than * 1 for distributed training algorithms. See Step 2: Launch a SageMaker * Distributed Training Job Using the SageMaker Python SDK for more information. *

* * @return The number of instances of the type specified by InstanceType. Choose an instance count * larger than 1 for distributed training algorithms. See Step 2: Launch a * SageMaker Distributed Training Job Using the SageMaker Python SDK for more information. */ public Integer getInstanceCount() { return this.instanceCount; } /** *

* The number of instances of the type specified by InstanceType. Choose an instance count larger than * 1 for distributed training algorithms. See Step 2: Launch a SageMaker * Distributed Training Job Using the SageMaker Python SDK for more information. *

* * @param instanceCount * The number of instances of the type specified by InstanceType. Choose an instance count * larger than 1 for distributed training algorithms. See Step 2: Launch a * SageMaker Distributed Training Job Using the SageMaker Python SDK for more information. * @return Returns a reference to this object so that method calls can be chained together. */ public HyperParameterTuningInstanceConfig withInstanceCount(Integer instanceCount) { setInstanceCount(instanceCount); return this; } /** *

* The volume size in GB of the data to be processed for hyperparameter optimization (optional). *

* * @param volumeSizeInGB * The volume size in GB of the data to be processed for hyperparameter optimization (optional). */ public void setVolumeSizeInGB(Integer volumeSizeInGB) { this.volumeSizeInGB = volumeSizeInGB; } /** *

* The volume size in GB of the data to be processed for hyperparameter optimization (optional). *

* * @return The volume size in GB of the data to be processed for hyperparameter optimization (optional). */ public Integer getVolumeSizeInGB() { return this.volumeSizeInGB; } /** *

* The volume size in GB of the data to be processed for hyperparameter optimization (optional). *

* * @param volumeSizeInGB * The volume size in GB of the data to be processed for hyperparameter optimization (optional). * @return Returns a reference to this object so that method calls can be chained together. */ public HyperParameterTuningInstanceConfig withVolumeSizeInGB(Integer volumeSizeInGB) { setVolumeSizeInGB(volumeSizeInGB); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getInstanceType() != null) sb.append("InstanceType: ").append(getInstanceType()).append(","); if (getInstanceCount() != null) sb.append("InstanceCount: ").append(getInstanceCount()).append(","); if (getVolumeSizeInGB() != null) sb.append("VolumeSizeInGB: ").append(getVolumeSizeInGB()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof HyperParameterTuningInstanceConfig == false) return false; HyperParameterTuningInstanceConfig other = (HyperParameterTuningInstanceConfig) obj; if (other.getInstanceType() == null ^ this.getInstanceType() == null) return false; if (other.getInstanceType() != null && other.getInstanceType().equals(this.getInstanceType()) == false) return false; if (other.getInstanceCount() == null ^ this.getInstanceCount() == null) return false; if (other.getInstanceCount() != null && other.getInstanceCount().equals(this.getInstanceCount()) == false) return false; if (other.getVolumeSizeInGB() == null ^ this.getVolumeSizeInGB() == null) return false; if (other.getVolumeSizeInGB() != null && other.getVolumeSizeInGB().equals(this.getVolumeSizeInGB()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getInstanceType() == null) ? 0 : getInstanceType().hashCode()); hashCode = prime * hashCode + ((getInstanceCount() == null) ? 0 : getInstanceCount().hashCode()); hashCode = prime * hashCode + ((getVolumeSizeInGB() == null) ? 0 : getVolumeSizeInGB().hashCode()); return hashCode; } @Override public HyperParameterTuningInstanceConfig clone() { try { return (HyperParameterTuningInstanceConfig) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.sagemaker.model.transform.HyperParameterTuningInstanceConfigMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy