com.android.dx.dex.code.OutputFinisher Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of builder Show documentation
Show all versions of builder Show documentation
Library to build Android applications.
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.dx.dex.code;
import com.android.dx.dex.DexOptions;
import com.android.dx.io.Opcodes;
import com.android.dx.rop.code.LocalItem;
import com.android.dx.rop.code.RegisterSpec;
import com.android.dx.rop.code.RegisterSpecList;
import com.android.dx.rop.code.RegisterSpecSet;
import com.android.dx.rop.code.SourcePosition;
import com.android.dx.rop.cst.Constant;
import com.android.dx.rop.cst.CstMemberRef;
import com.android.dx.rop.cst.CstString;
import com.android.dx.rop.cst.CstType;
import com.android.dx.rop.type.Type;
import com.android.dx.ssa.BasicRegisterMapper;
import com.android.dex.DexException;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.HashSet;
/**
* Processor for instruction lists, which takes a "first cut" of
* instruction selection as a basis and produces a "final cut" in the
* form of a {@link DalvInsnList} instance.
*/
public final class OutputFinisher {
/** {@code non-null;} options for dex output */
private final DexOptions dexOptions;
/**
* {@code >= 0;} register count for the method, not including any extra
* "reserved" registers needed to translate "difficult" instructions
*/
private final int unreservedRegCount;
/** {@code non-null;} the list of instructions, per se */
private ArrayList insns;
/** whether any instruction has position info */
private boolean hasAnyPositionInfo;
/** whether any instruction has local variable info */
private boolean hasAnyLocalInfo;
/**
* {@code >= 0;} the count of reserved registers (low-numbered
* registers used when expanding instructions that can't be
* represented simply); becomes valid after a call to {@link
* #massageInstructions}
*/
private int reservedCount;
/**
* {@code >= 0;} the count of reserved registers just before parameters in order to align them.
*/
private int reservedParameterCount;
/**
* Size, in register units, of all the parameters to this method
*/
private final int paramSize;
/**
* Constructs an instance. It initially contains no instructions.
*
* @param dexOptions {@code non-null;} options for dex output
* @param initialCapacity {@code >= 0;} initial capacity of the
* instructions list
* @param regCount {@code >= 0;} register count for the method
* @param paramSize size, in register units, of all the parameters for this method
*/
public OutputFinisher(DexOptions dexOptions, int initialCapacity, int regCount, int paramSize) {
this.dexOptions = dexOptions;
this.unreservedRegCount = regCount;
this.insns = new ArrayList(initialCapacity);
this.reservedCount = -1;
this.hasAnyPositionInfo = false;
this.hasAnyLocalInfo = false;
this.paramSize = paramSize;
}
/**
* Returns whether any of the instructions added to this instance
* come with position info.
*
* @return whether any of the instructions added to this instance
* come with position info
*/
public boolean hasAnyPositionInfo() {
return hasAnyPositionInfo;
}
/**
* Returns whether this instance has any local variable information.
*
* @return whether this instance has any local variable information
*/
public boolean hasAnyLocalInfo() {
return hasAnyLocalInfo;
}
/**
* Helper for {@link #add} which scrutinizes a single
* instruction for local variable information.
*
* @param insn {@code non-null;} instruction to scrutinize
* @return {@code true} iff the instruction refers to any
* named locals
*/
private static boolean hasLocalInfo(DalvInsn insn) {
if (insn instanceof LocalSnapshot) {
RegisterSpecSet specs = ((LocalSnapshot) insn).getLocals();
int size = specs.size();
for (int i = 0; i < size; i++) {
if (hasLocalInfo(specs.get(i))) {
return true;
}
}
} else if (insn instanceof LocalStart) {
RegisterSpec spec = ((LocalStart) insn).getLocal();
if (hasLocalInfo(spec)) {
return true;
}
}
return false;
}
/**
* Helper for {@link #hasAnyLocalInfo} which scrutinizes a single
* register spec.
*
* @param spec {@code non-null;} spec to scrutinize
* @return {@code true} iff the spec refers to any
* named locals
*/
private static boolean hasLocalInfo(RegisterSpec spec) {
return (spec != null)
&& (spec.getLocalItem().getName() != null);
}
/**
* Returns the set of all constants referred to by instructions added
* to this instance.
*
* @return {@code non-null;} the set of constants
*/
public HashSet getAllConstants() {
HashSet result = new HashSet(20);
for (DalvInsn insn : insns) {
addConstants(result, insn);
}
return result;
}
/**
* Helper for {@link #getAllConstants} which adds all the info for
* a single instruction.
*
* @param result {@code non-null;} result set to add to
* @param insn {@code non-null;} instruction to scrutinize
*/
private static void addConstants(HashSet result,
DalvInsn insn) {
if (insn instanceof CstInsn) {
Constant cst = ((CstInsn) insn).getConstant();
result.add(cst);
} else if (insn instanceof LocalSnapshot) {
RegisterSpecSet specs = ((LocalSnapshot) insn).getLocals();
int size = specs.size();
for (int i = 0; i < size; i++) {
addConstants(result, specs.get(i));
}
} else if (insn instanceof LocalStart) {
RegisterSpec spec = ((LocalStart) insn).getLocal();
addConstants(result, spec);
}
}
/**
* Helper for {@link #getAllConstants} which adds all the info for
* a single {@code RegisterSpec}.
*
* @param result {@code non-null;} result set to add to
* @param spec {@code null-ok;} register spec to add
*/
private static void addConstants(HashSet result,
RegisterSpec spec) {
if (spec == null) {
return;
}
LocalItem local = spec.getLocalItem();
CstString name = local.getName();
CstString signature = local.getSignature();
Type type = spec.getType();
if (type != Type.KNOWN_NULL) {
result.add(CstType.intern(type));
}
if (name != null) {
result.add(name);
}
if (signature != null) {
result.add(signature);
}
}
/**
* Adds an instruction to the output.
*
* @param insn {@code non-null;} the instruction to add
*/
public void add(DalvInsn insn) {
insns.add(insn);
updateInfo(insn);
}
/**
* Inserts an instruction in the output at the given offset.
*
* @param at {@code >= 0;} what index to insert at
* @param insn {@code non-null;} the instruction to insert
*/
public void insert(int at, DalvInsn insn) {
insns.add(at, insn);
updateInfo(insn);
}
/**
* Helper for {@link #add} and {@link #insert},
* which updates the position and local info flags.
*
* @param insn {@code non-null;} an instruction that was just introduced
*/
private void updateInfo(DalvInsn insn) {
if (! hasAnyPositionInfo) {
SourcePosition pos = insn.getPosition();
if (pos.getLine() >= 0) {
hasAnyPositionInfo = true;
}
}
if (! hasAnyLocalInfo) {
if (hasLocalInfo(insn)) {
hasAnyLocalInfo = true;
}
}
}
/**
* Reverses a branch which is buried a given number of instructions
* backward in the output. It is illegal to call this unless the
* indicated instruction really is a reversible branch.
*
* @param which how many instructions back to find the branch;
* {@code 0} is the most recently added instruction,
* {@code 1} is the instruction before that, etc.
* @param newTarget {@code non-null;} the new target for the
* reversed branch
*/
public void reverseBranch(int which, CodeAddress newTarget) {
int size = insns.size();
int index = size - which - 1;
TargetInsn targetInsn;
try {
targetInsn = (TargetInsn) insns.get(index);
} catch (IndexOutOfBoundsException ex) {
// Translate the exception.
throw new IllegalArgumentException("too few instructions");
} catch (ClassCastException ex) {
// Translate the exception.
throw new IllegalArgumentException("non-reversible instruction");
}
/*
* No need to call this.set(), since the format and other info
* are the same.
*/
insns.set(index, targetInsn.withNewTargetAndReversed(newTarget));
}
/**
* Assigns indices in all instructions that need them, using the
* given callback to perform lookups. This should be called before
* calling {@link #finishProcessingAndGetList}.
*
* @param callback {@code non-null;} callback object
*/
public void assignIndices(DalvCode.AssignIndicesCallback callback) {
for (DalvInsn insn : insns) {
if (insn instanceof CstInsn) {
assignIndices((CstInsn) insn, callback);
}
}
}
/**
* Helper for {@link #assignIndices} which does assignment for one
* instruction.
*
* @param insn {@code non-null;} the instruction
* @param callback {@code non-null;} the callback
*/
private static void assignIndices(CstInsn insn,
DalvCode.AssignIndicesCallback callback) {
Constant cst = insn.getConstant();
int index = callback.getIndex(cst);
if (index >= 0) {
insn.setIndex(index);
}
if (cst instanceof CstMemberRef) {
CstMemberRef member = (CstMemberRef) cst;
CstType definer = member.getDefiningClass();
index = callback.getIndex(definer);
if (index >= 0) {
insn.setClassIndex(index);
}
}
}
/**
* Does final processing on this instance and gets the output as
* a {@link DalvInsnList}. Final processing consists of:
*
*
* - optionally renumbering registers (to make room as needed for
* expanded instructions)
* - picking a final opcode for each instruction
* - rewriting instructions, because of register number,
* constant pool index, or branch target size issues
* - assigning final addresses
*
*
* Note: This method may only be called once per instance
* of this class.
*
* @return {@code non-null;} the output list
* @throws UnsupportedOperationException if this method has
* already been called
*/
public DalvInsnList finishProcessingAndGetList() {
if (reservedCount >= 0) {
throw new UnsupportedOperationException("already processed");
}
Dop[] opcodes = makeOpcodesArray();
reserveRegisters(opcodes);
if (dexOptions.ALIGN_64BIT_REGS_IN_OUTPUT_FINISHER) {
align64bits(opcodes);
}
massageInstructions(opcodes);
assignAddressesAndFixBranches();
return DalvInsnList.makeImmutable(insns, reservedCount + unreservedRegCount
+ reservedParameterCount);
}
/**
* Helper for {@link #finishProcessingAndGetList}, which extracts
* the opcode out of each instruction into a separate array, to be
* further manipulated as things progress.
*
* @return {@code non-null;} the array of opcodes
*/
private Dop[] makeOpcodesArray() {
int size = insns.size();
Dop[] result = new Dop[size];
for (int i = 0; i < size; i++) {
result[i] = insns.get(i).getOpcode();
}
return result;
}
/**
* Helper for {@link #finishProcessingAndGetList}, which figures
* out how many reserved registers are required and then reserving
* them. It also updates the given {@code opcodes} array so
* as to avoid extra work when constructing the massaged
* instruction list.
*
* @param opcodes {@code non-null;} array of per-instruction
* opcode selections
* @return true if reservedCount is expanded, false otherwise
*/
private boolean reserveRegisters(Dop[] opcodes) {
boolean reservedCountExpanded = false;
int oldReservedCount = (reservedCount < 0) ? 0 : reservedCount;
/*
* Call calculateReservedCount() and then perform register
* reservation, repeatedly until no new reservations happen.
*/
for (;;) {
int newReservedCount = calculateReservedCount(opcodes);
if (oldReservedCount >= newReservedCount) {
break;
}
reservedCountExpanded = true;
int reservedDifference = newReservedCount - oldReservedCount;
int size = insns.size();
for (int i = 0; i < size; i++) {
/*
* CodeAddress instance identity is used to link
* TargetInsns to their targets, so it is
* inappropriate to make replacements, and they don't
* have registers in any case. Hence, the instanceof
* test below.
*/
DalvInsn insn = insns.get(i);
if (!(insn instanceof CodeAddress)) {
/*
* No need to call this.set() since the format and
* other info are the same.
*/
insns.set(i, insn.withRegisterOffset(reservedDifference));
}
}
oldReservedCount = newReservedCount;
}
reservedCount = oldReservedCount;
return reservedCountExpanded;
}
/**
* Helper for {@link #reserveRegisters}, which does one
* pass over the instructions, calculating the number of
* registers that need to be reserved. It also updates the
* {@code opcodes} list to help avoid extra work in future
* register reservation passes.
*
* @param opcodes {@code non-null;} array of per-instruction
* opcode selections
* @return {@code >= 0;} the count of reserved registers
*/
private int calculateReservedCount(Dop[] opcodes) {
int size = insns.size();
/*
* Potential new value of reservedCount, which gets updated in the
* following loop. It starts out with the existing reservedCount
* and gets increased if it turns out that additional registers
* need to be reserved.
*/
int newReservedCount = reservedCount;
for (int i = 0; i < size; i++) {
DalvInsn insn = insns.get(i);
Dop originalOpcode = opcodes[i];
Dop newOpcode = findOpcodeForInsn(insn, originalOpcode);
if (newOpcode == null) {
/*
* The instruction will need to be expanded, so find the
* expanded opcode and reserve registers for it.
*/
Dop expandedOp = findExpandedOpcodeForInsn(insn);
BitSet compatRegs = expandedOp.getFormat().compatibleRegs(insn);
int reserve = insn.getMinimumRegisterRequirement(compatRegs);
if (reserve > newReservedCount) {
newReservedCount = reserve;
}
} else if (originalOpcode == newOpcode) {
continue;
}
opcodes[i] = newOpcode;
}
return newReservedCount;
}
/**
* Attempts to fit the given instruction into a specific opcode,
* returning the opcode whose format that the instruction fits
* into or {@code null} to indicate that the instruction will need
* to be expanded. This fitting process starts with the given
* opcode as a first "best guess" and then pessimizes from there
* if necessary.
*
* @param insn {@code non-null;} the instruction in question
* @param guess {@code null-ok;} the current guess as to the best
* opcode; {@code null} means that no simple opcode fits
* @return {@code null-ok;} a possibly-different opcode; either a
* {@code non-null} good fit or {@code null} to indicate that no
* simple opcode fits
*/
private Dop findOpcodeForInsn(DalvInsn insn, Dop guess) {
/*
* Note: The initial guess might be null, meaning that an
* earlier call to this method already determined that there
* was no possible simple opcode fit.
*/
while (guess != null) {
if (guess.getFormat().isCompatible(insn)) {
/*
* Don't break out for const_string to generate jumbo version
* when option is enabled.
*/
if (!dexOptions.forceJumbo ||
guess.getOpcode() != Opcodes.CONST_STRING) {
break;
}
}
guess = Dops.getNextOrNull(guess, dexOptions);
}
return guess;
}
/**
* Finds the proper opcode for the given instruction, ignoring
* register constraints.
*
* @param insn {@code non-null;} the instruction in question
* @return {@code non-null;} the opcode that fits
*/
private Dop findExpandedOpcodeForInsn(DalvInsn insn) {
Dop result = findOpcodeForInsn(insn.getLowRegVersion(), insn.getOpcode());
if (result == null) {
throw new DexException("No expanded opcode for " + insn);
}
return result;
}
/**
* Helper for {@link #finishProcessingAndGetList}, which goes
* through each instruction in the output, making sure its opcode
* can accomodate its arguments. In cases where the opcode is
* unable to do so, this replaces the instruction with a larger
* instruction with identical semantics that will work.
*
* This method may also reserve a number of low-numbered
* registers, renumbering the instructions' original registers, in
* order to have register space available in which to move
* very-high registers when expanding instructions into
* multi-instruction sequences. This expansion is done when no
* simple instruction format can be found for a given instruction that
* is able to accomodate that instruction's registers.
*
* This method ignores issues of branch target size, since
* final addresses aren't known at the point that this method is
* called.
*
* @param opcodes {@code non-null;} array of per-instruction
* opcode selections
*/
private void massageInstructions(Dop[] opcodes) {
if (reservedCount == 0) {
/*
* The easy common case: No registers were reserved, so we
* merely need to replace any instructions whose format
* (and hence whose opcode) changed during the reservation
* pass, but all instructions will stay at their original
* indices, and the instruction list doesn't grow.
*/
int size = insns.size();
for (int i = 0; i < size; i++) {
DalvInsn insn = insns.get(i);
Dop originalOpcode = insn.getOpcode();
Dop currentOpcode = opcodes[i];
if (originalOpcode != currentOpcode) {
insns.set(i, insn.withOpcode(currentOpcode));
}
}
} else {
/*
* The difficult uncommon case: Some instructions have to be
* expanded to deal with high registers.
*/
insns = performExpansion(opcodes);
}
}
/**
* Helper for {@link #massageInstructions}, which constructs a
* replacement list, where each {link DalvInsn} instance that
* couldn't be represented simply (due to register representation
* problems) is expanded into a series of instances that together
* perform the proper function.
*
* @param opcodes {@code non-null;} array of per-instruction
* opcode selections
* @return {@code non-null;} the replacement list
*/
private ArrayList performExpansion(Dop[] opcodes) {
int size = insns.size();
ArrayList result = new ArrayList(size * 2);
ArrayList closelyBoundAddresses = new ArrayList();
for (int i = 0; i < size; i++) {
DalvInsn insn = insns.get(i);
Dop originalOpcode = insn.getOpcode();
Dop currentOpcode = opcodes[i];
DalvInsn prefix;
DalvInsn suffix;
if (currentOpcode != null) {
// No expansion is necessary.
prefix = null;
suffix = null;
} else {
// Expansion is required.
currentOpcode = findExpandedOpcodeForInsn(insn);
BitSet compatRegs =
currentOpcode.getFormat().compatibleRegs(insn);
prefix = insn.expandedPrefix(compatRegs);
suffix = insn.expandedSuffix(compatRegs);
// Expand necessary registers to fit the new format
insn = insn.expandedVersion(compatRegs);
}
if (insn instanceof CodeAddress) {
// If we have a closely bound address, don't add it yet,
// because we need to add it after the prefix for the
// instruction it is bound to.
if (((CodeAddress) insn).getBindsClosely()) {
closelyBoundAddresses.add((CodeAddress)insn);
continue;
}
}
if (prefix != null) {
result.add(prefix);
}
// Add any pending closely bound addresses
if (!(insn instanceof ZeroSizeInsn) && closelyBoundAddresses.size() > 0) {
for (CodeAddress codeAddress: closelyBoundAddresses) {
result.add(codeAddress);
}
closelyBoundAddresses.clear();
}
if (currentOpcode != originalOpcode) {
insn = insn.withOpcode(currentOpcode);
}
result.add(insn);
if (suffix != null) {
result.add(suffix);
}
}
return result;
}
/**
* Helper for {@link #finishProcessingAndGetList}, which assigns
* addresses to each instruction, possibly rewriting branches to
* fix ones that wouldn't otherwise be able to reach their
* targets.
*/
private void assignAddressesAndFixBranches() {
for (;;) {
assignAddresses();
if (!fixBranches()) {
break;
}
}
}
/**
* Helper for {@link #assignAddressesAndFixBranches}, which
* assigns an address to each instruction, in order.
*/
private void assignAddresses() {
int address = 0;
int size = insns.size();
for (int i = 0; i < size; i++) {
DalvInsn insn = insns.get(i);
insn.setAddress(address);
address += insn.codeSize();
}
}
/**
* Helper for {@link #assignAddressesAndFixBranches}, which checks
* the branch target size requirement of each branch instruction
* to make sure it fits. For instructions that don't fit, this
* rewrites them to use a {@code goto} of some sort. In the
* case of a conditional branch that doesn't fit, the sense of the
* test is reversed in order to branch around a {@code goto}
* to the original target.
*
* @return whether any branches had to be fixed
*/
private boolean fixBranches() {
int size = insns.size();
boolean anyFixed = false;
for (int i = 0; i < size; i++) {
DalvInsn insn = insns.get(i);
if (!(insn instanceof TargetInsn)) {
// This loop only needs to inspect TargetInsns.
continue;
}
Dop opcode = insn.getOpcode();
TargetInsn target = (TargetInsn) insn;
if (opcode.getFormat().branchFits(target)) {
continue;
}
if (opcode.getFamily() == Opcodes.GOTO) {
// It is a goto; widen it if possible.
opcode = findOpcodeForInsn(insn, opcode);
if (opcode == null) {
/*
* The branch is already maximally large. This should
* only be possible if a method somehow manages to have
* more than 2^31 code units.
*/
throw new UnsupportedOperationException("method too long");
}
insns.set(i, insn.withOpcode(opcode));
} else {
/*
* It is a conditional: Reverse its sense, and arrange for
* it to branch around an absolute goto to the original
* branch target.
*
* Note: An invariant of the list being processed is
* that every TargetInsn is followed by a CodeAddress.
* Hence, it is always safe to get the next element
* after a TargetInsn and cast it to CodeAddress, as
* is happening a few lines down.
*
* Also note: Size gets incremented by one here, as we
* have -- in the net -- added one additional element
* to the list, so we increment i to match. The added
* and changed elements will be inspected by a repeat
* call to this method after this invocation returns.
*/
CodeAddress newTarget;
try {
newTarget = (CodeAddress) insns.get(i + 1);
} catch (IndexOutOfBoundsException ex) {
// The TargetInsn / CodeAddress invariant was violated.
throw new IllegalStateException(
"unpaired TargetInsn (dangling)");
} catch (ClassCastException ex) {
// The TargetInsn / CodeAddress invariant was violated.
throw new IllegalStateException("unpaired TargetInsn");
}
TargetInsn gotoInsn =
new TargetInsn(Dops.GOTO, target.getPosition(),
RegisterSpecList.EMPTY, target.getTarget());
insns.set(i, gotoInsn);
insns.add(i, target.withNewTargetAndReversed(newTarget));
size++;
i++;
}
anyFixed = true;
}
return anyFixed;
}
private void align64bits(Dop[] opcodes) {
while (true) {
int notAligned64bitRegAccess = 0;
int aligned64bitRegAccess = 0;
int notAligned64bitParamAccess = 0;
int aligned64bitParamAccess = 0;
int lastParameter = unreservedRegCount + reservedCount + reservedParameterCount;
int firstParameter = lastParameter - paramSize;
// Collects the number of time that 64-bit registers are accessed aligned or not.
for (DalvInsn insn : insns) {
RegisterSpecList regs = insn.getRegisters();
for (int usedRegIdx = 0; usedRegIdx < regs.size(); usedRegIdx++) {
RegisterSpec reg = regs.get(usedRegIdx);
if (reg.isCategory2()) {
boolean isParameter = reg.getReg() >= firstParameter;
if (reg.isEvenRegister()) {
if (isParameter) {
aligned64bitParamAccess++;
} else {
aligned64bitRegAccess++;
}
} else {
if (isParameter) {
notAligned64bitParamAccess++;
} else {
notAligned64bitRegAccess++;
}
}
}
}
}
if (notAligned64bitParamAccess > aligned64bitParamAccess
&& notAligned64bitRegAccess > aligned64bitRegAccess) {
addReservedRegisters(1);
} else if (notAligned64bitParamAccess > aligned64bitParamAccess) {
addReservedParameters(1);
} else if (notAligned64bitRegAccess > aligned64bitRegAccess) {
addReservedRegisters(1);
// Need to shift parameters if they exist and if number of unaligned is greater than
// aligned. We test the opposite because we previously shift all registers by one,
// so the number of aligned become the number of unaligned.
if (paramSize != 0 && aligned64bitParamAccess > notAligned64bitParamAccess) {
addReservedParameters(1);
}
} else {
break;
}
if (!reserveRegisters(opcodes)) {
break;
}
}
}
private void addReservedParameters(int delta) {
shiftParameters(delta);
reservedParameterCount += delta;
}
private void addReservedRegisters(int delta) {
shiftAllRegisters(delta);
reservedCount += delta;
}
private void shiftAllRegisters(int delta) {
int insnSize = insns.size();
for (int i = 0; i < insnSize; i++) {
DalvInsn insn = insns.get(i);
// Since there is no need to replace CodeAddress since it does not use registers, skips it to
// avoid to update all TargetInsn that contain a reference to CodeAddress
if (!(insn instanceof CodeAddress)) {
insns.set(i, insn.withRegisterOffset(delta));
}
}
}
private void shiftParameters(int delta) {
int insnSize = insns.size();
int lastParameter = unreservedRegCount + reservedCount + reservedParameterCount;
int firstParameter = lastParameter - paramSize;
BasicRegisterMapper mapper = new BasicRegisterMapper(lastParameter);
for (int i = 0; i < lastParameter; i++) {
if (i >= firstParameter) {
mapper.addMapping(i, i + delta, 1);
} else {
mapper.addMapping(i, i, 1);
}
}
for (int i = 0; i < insnSize; i++) {
DalvInsn insn = insns.get(i);
// Since there is no need to replace CodeAddress since it does not use registers, skips it to
// avoid to update all TargetInsn that contain a reference to CodeAddress
if (!(insn instanceof CodeAddress)) {
insns.set(i, insn.withMapper(mapper));
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy