com.android.dx.dex.code.InsnFormat Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of builder Show documentation
Show all versions of builder Show documentation
Library to build Android applications.
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.dx.dex.code;
import com.android.dx.rop.code.RegisterSpec;
import com.android.dx.rop.code.RegisterSpecList;
import com.android.dx.rop.cst.Constant;
import com.android.dx.rop.cst.CstInteger;
import com.android.dx.rop.cst.CstKnownNull;
import com.android.dx.rop.cst.CstLiteral64;
import com.android.dx.rop.cst.CstLiteralBits;
import com.android.dx.rop.cst.CstString;
import com.android.dx.util.AnnotatedOutput;
import com.android.dx.util.Hex;
import java.util.BitSet;
/**
* Base class for all instruction format handlers. Instruction format
* handlers know how to translate {@link DalvInsn} instances into
* streams of code units, as well as human-oriented listing strings
* representing such translations.
*/
public abstract class InsnFormat {
/**
* flag to enable/disable the new extended opcode formats; meant as a
* temporary measure until VM support for the salient opcodes is
* added. TODO: Remove this declaration when the VM can deal.
*/
public static final boolean ALLOW_EXTENDED_OPCODES = true;
/**
* Returns the string form, suitable for inclusion in a listing
* dump, of the given instruction. The instruction must be of this
* instance's format for proper operation.
*
* @param insn {@code non-null;} the instruction
* @param noteIndices whether to include an explicit notation of
* constant pool indices
* @return {@code non-null;} the string form
*/
public final String listingString(DalvInsn insn, boolean noteIndices) {
String op = insn.getOpcode().getName();
String arg = insnArgString(insn);
String comment = insnCommentString(insn, noteIndices);
StringBuilder sb = new StringBuilder(100);
sb.append(op);
if (arg.length() != 0) {
sb.append(' ');
sb.append(arg);
}
if (comment.length() != 0) {
sb.append(" // ");
sb.append(comment);
}
return sb.toString();
}
/**
* Returns the string form of the arguments to the given instruction.
* The instruction must be of this instance's format. If the instruction
* has no arguments, then the result should be {@code ""}, not
* {@code null}.
*
* Subclasses must override this method.
*
* @param insn {@code non-null;} the instruction
* @return {@code non-null;} the string form
*/
public abstract String insnArgString(DalvInsn insn);
/**
* Returns the associated comment for the given instruction, if any.
* The instruction must be of this instance's format. If the instruction
* has no comment, then the result should be {@code ""}, not
* {@code null}.
*
* Subclasses must override this method.
*
* @param insn {@code non-null;} the instruction
* @param noteIndices whether to include an explicit notation of
* constant pool indices
* @return {@code non-null;} the string form
*/
public abstract String insnCommentString(DalvInsn insn,
boolean noteIndices);
/**
* Gets the code size of instructions that use this format. The
* size is a number of 16-bit code units, not bytes. This should
* throw an exception if this format is of variable size.
*
* @return {@code >= 0;} the instruction length in 16-bit code units
*/
public abstract int codeSize();
/**
* Returns whether or not the given instruction's arguments will
* fit in this instance's format. This includes such things as
* counting register arguments, checking register ranges, and
* making sure that additional arguments are of appropriate types
* and are in-range. If this format has a branch target but the
* instruction's branch offset is unknown, this method will simply
* not check the offset.
*
* Subclasses must override this method.
*
* @param insn {@code non-null;} the instruction to check
* @return {@code true} iff the instruction's arguments are
* appropriate for this instance, or {@code false} if not
*/
public abstract boolean isCompatible(DalvInsn insn);
/**
* Returns which of a given instruction's registers will fit in
* this instance's format.
*
* The default implementation of this method always returns
* an empty BitSet. Subclasses must override this method if they
* have registers.
*
* @param insn {@code non-null;} the instruction to check
* @return {@code non-null;} a BitSet flagging registers in the
* register list that are compatible to this format
*/
public BitSet compatibleRegs(DalvInsn insn) {
return new BitSet();
}
/**
* Returns whether or not the given instruction's branch offset will
* fit in this instance's format. This always returns {@code false}
* for formats that don't include a branch offset.
*
* The default implementation of this method always returns
* {@code false}. Subclasses must override this method if they
* include branch offsets.
*
* @param insn {@code non-null;} the instruction to check
* @return {@code true} iff the instruction's branch offset is
* appropriate for this instance, or {@code false} if not
*/
public boolean branchFits(TargetInsn insn) {
return false;
}
/**
* Writes the code units for the given instruction to the given
* output destination. The instruction must be of this instance's format.
*
* Subclasses must override this method.
*
* @param out {@code non-null;} the output destination to write to
* @param insn {@code non-null;} the instruction to write
*/
public abstract void writeTo(AnnotatedOutput out, DalvInsn insn);
/**
* Helper method to return a register list string.
*
* @param list {@code non-null;} the list of registers
* @return {@code non-null;} the string form
*/
protected static String regListString(RegisterSpecList list) {
int sz = list.size();
StringBuffer sb = new StringBuffer(sz * 5 + 2);
sb.append('{');
for (int i = 0; i < sz; i++) {
if (i != 0) {
sb.append(", ");
}
sb.append(list.get(i).regString());
}
sb.append('}');
return sb.toString();
}
/**
* Helper method to return a register range string.
*
* @param list {@code non-null;} the list of registers (which must be
* sequential)
* @return {@code non-null;} the string form
*/
protected static String regRangeString(RegisterSpecList list) {
int size = list.size();
StringBuilder sb = new StringBuilder(30);
sb.append("{");
switch (size) {
case 0: {
// Nothing to do.
break;
}
case 1: {
sb.append(list.get(0).regString());
break;
}
default: {
RegisterSpec lastReg = list.get(size - 1);
if (lastReg.getCategory() == 2) {
/*
* Add one to properly represent a list-final
* category-2 register.
*/
lastReg = lastReg.withOffset(1);
}
sb.append(list.get(0).regString());
sb.append("..");
sb.append(lastReg.regString());
}
}
sb.append("}");
return sb.toString();
}
/**
* Helper method to return a literal bits argument string.
*
* @param value the value
* @return {@code non-null;} the string form
*/
protected static String literalBitsString(CstLiteralBits value) {
StringBuffer sb = new StringBuffer(100);
sb.append('#');
if (value instanceof CstKnownNull) {
sb.append("null");
} else {
sb.append(value.typeName());
sb.append(' ');
sb.append(value.toHuman());
}
return sb.toString();
}
/**
* Helper method to return a literal bits comment string.
*
* @param value the value
* @param width the width of the constant, in bits (used for displaying
* the uninterpreted bits; one of: {@code 4 8 16 32 64}
* @return {@code non-null;} the comment
*/
protected static String literalBitsComment(CstLiteralBits value,
int width) {
StringBuffer sb = new StringBuffer(20);
sb.append("#");
long bits;
if (value instanceof CstLiteral64) {
bits = ((CstLiteral64) value).getLongBits();
} else {
bits = value.getIntBits();
}
switch (width) {
case 4: sb.append(Hex.uNibble((int) bits)); break;
case 8: sb.append(Hex.u1((int) bits)); break;
case 16: sb.append(Hex.u2((int) bits)); break;
case 32: sb.append(Hex.u4((int) bits)); break;
case 64: sb.append(Hex.u8(bits)); break;
default: {
throw new RuntimeException("shouldn't happen");
}
}
return sb.toString();
}
/**
* Helper method to return a branch address string.
*
* @param insn {@code non-null;} the instruction in question
* @return {@code non-null;} the string form of the instruction's
* branch target
*/
protected static String branchString(DalvInsn insn) {
TargetInsn ti = (TargetInsn) insn;
int address = ti.getTargetAddress();
return (address == (char) address) ? Hex.u2(address) : Hex.u4(address);
}
/**
* Helper method to return the comment for a branch.
*
* @param insn {@code non-null;} the instruction in question
* @return {@code non-null;} the comment
*/
protected static String branchComment(DalvInsn insn) {
TargetInsn ti = (TargetInsn) insn;
int offset = ti.getTargetOffset();
return (offset == (short) offset) ? Hex.s2(offset) : Hex.s4(offset);
}
/**
* Helper method to return the constant string for a {@link CstInsn}
* in human form.
*
* @param insn {@code non-null;} a constant-bearing instruction
* @return {@code non-null;} the human string form of the contained
* constant
*/
protected static String cstString(DalvInsn insn) {
CstInsn ci = (CstInsn) insn;
Constant cst = ci.getConstant();
return cst instanceof CstString ? ((CstString) cst).toQuoted() : cst.toHuman();
}
/**
* Helper method to return an instruction comment for a constant.
*
* @param insn {@code non-null;} a constant-bearing instruction
* @return {@code non-null;} comment string representing the constant
*/
protected static String cstComment(DalvInsn insn) {
CstInsn ci = (CstInsn) insn;
if (! ci.hasIndex()) {
return "";
}
StringBuilder sb = new StringBuilder(20);
int index = ci.getIndex();
sb.append(ci.getConstant().typeName());
sb.append('@');
if (index < 65536) {
sb.append(Hex.u2(index));
} else {
sb.append(Hex.u4(index));
}
return sb.toString();
}
/**
* Helper method to determine if a signed int value fits in a nibble.
*
* @param value the value in question
* @return {@code true} iff it's in the range -8..+7
*/
protected static boolean signedFitsInNibble(int value) {
return (value >= -8) && (value <= 7);
}
/**
* Helper method to determine if an unsigned int value fits in a nibble.
*
* @param value the value in question
* @return {@code true} iff it's in the range 0..0xf
*/
protected static boolean unsignedFitsInNibble(int value) {
return value == (value & 0xf);
}
/**
* Helper method to determine if a signed int value fits in a byte.
*
* @param value the value in question
* @return {@code true} iff it's in the range -0x80..+0x7f
*/
protected static boolean signedFitsInByte(int value) {
return (byte) value == value;
}
/**
* Helper method to determine if an unsigned int value fits in a byte.
*
* @param value the value in question
* @return {@code true} iff it's in the range 0..0xff
*/
protected static boolean unsignedFitsInByte(int value) {
return value == (value & 0xff);
}
/**
* Helper method to determine if a signed int value fits in a short.
*
* @param value the value in question
* @return {@code true} iff it's in the range -0x8000..+0x7fff
*/
protected static boolean signedFitsInShort(int value) {
return (short) value == value;
}
/**
* Helper method to determine if an unsigned int value fits in a short.
*
* @param value the value in question
* @return {@code true} iff it's in the range 0..0xffff
*/
protected static boolean unsignedFitsInShort(int value) {
return value == (value & 0xffff);
}
/**
* Helper method to determine if a list of registers are sequential,
* including degenerate cases for empty or single-element lists.
*
* @param list {@code non-null;} the list of registers
* @return {@code true} iff the list is sequentially ordered
*/
protected static boolean isRegListSequential(RegisterSpecList list) {
int sz = list.size();
if (sz < 2) {
return true;
}
int first = list.get(0).getReg();
int next = first;
for (int i = 0; i < sz; i++) {
RegisterSpec one = list.get(i);
if (one.getReg() != next) {
return false;
}
next += one.getCategory();
}
return true;
}
/**
* Helper method to extract the callout-argument index from an
* appropriate instruction.
*
* @param insn {@code non-null;} the instruction
* @return {@code >= 0;} the callout argument index
*/
protected static int argIndex(DalvInsn insn) {
int arg = ((CstInteger) ((CstInsn) insn).getConstant()).getValue();
if (arg < 0) {
throw new IllegalArgumentException("bogus insn");
}
return arg;
}
/**
* Helper method to combine an opcode and a second byte of data into
* the appropriate form for emitting into a code buffer.
*
* @param insn {@code non-null;} the instruction containing the opcode
* @param arg {@code 0..255;} arbitrary other byte value
* @return combined value
*/
protected static short opcodeUnit(DalvInsn insn, int arg) {
if ((arg & 0xff) != arg) {
throw new IllegalArgumentException("arg out of range 0..255");
}
int opcode = insn.getOpcode().getOpcode();
if ((opcode & 0xff) != opcode) {
throw new IllegalArgumentException("opcode out of range 0..255");
}
return (short) (opcode | (arg << 8));
}
/**
* Helper method to get an extended (16-bit) opcode out of an
* instruction, returning it as a code unit. The opcode
* must be an extended opcode.
*
* @param insn {@code non-null;} the instruction containing the
* extended opcode
* @return the opcode as a code unit
*/
protected static short opcodeUnit(DalvInsn insn) {
int opcode = insn.getOpcode().getOpcode();
if ((opcode < 0x100) || (opcode > 0xffff)) {
throw new IllegalArgumentException("opcode out of range 0..65535");
}
return (short) opcode;
}
/**
* Helper method to combine two bytes into a code unit.
*
* @param low {@code 0..255;} low byte
* @param high {@code 0..255;} high byte
* @return combined value
*/
protected static short codeUnit(int low, int high) {
if ((low & 0xff) != low) {
throw new IllegalArgumentException("low out of range 0..255");
}
if ((high & 0xff) != high) {
throw new IllegalArgumentException("high out of range 0..255");
}
return (short) (low | (high << 8));
}
/**
* Helper method to combine four nibbles into a code unit.
*
* @param n0 {@code 0..15;} low nibble
* @param n1 {@code 0..15;} medium-low nibble
* @param n2 {@code 0..15;} medium-high nibble
* @param n3 {@code 0..15;} high nibble
* @return combined value
*/
protected static short codeUnit(int n0, int n1, int n2, int n3) {
if ((n0 & 0xf) != n0) {
throw new IllegalArgumentException("n0 out of range 0..15");
}
if ((n1 & 0xf) != n1) {
throw new IllegalArgumentException("n1 out of range 0..15");
}
if ((n2 & 0xf) != n2) {
throw new IllegalArgumentException("n2 out of range 0..15");
}
if ((n3 & 0xf) != n3) {
throw new IllegalArgumentException("n3 out of range 0..15");
}
return (short) (n0 | (n1 << 4) | (n2 << 8) | (n3 << 12));
}
/**
* Helper method to combine two nibbles into a byte.
*
* @param low {@code 0..15;} low nibble
* @param high {@code 0..15;} high nibble
* @return {@code 0..255;} combined value
*/
protected static int makeByte(int low, int high) {
if ((low & 0xf) != low) {
throw new IllegalArgumentException("low out of range 0..15");
}
if ((high & 0xf) != high) {
throw new IllegalArgumentException("high out of range 0..15");
}
return low | (high << 4);
}
/**
* Writes one code unit to the given output destination.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0) {
out.writeShort(c0);
}
/**
* Writes two code units to the given output destination.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, short c1) {
out.writeShort(c0);
out.writeShort(c1);
}
/**
* Writes three code units to the given output destination.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1 code unit to write
* @param c2 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, short c1,
short c2) {
out.writeShort(c0);
out.writeShort(c1);
out.writeShort(c2);
}
/**
* Writes four code units to the given output destination.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1 code unit to write
* @param c2 code unit to write
* @param c3 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, short c1,
short c2, short c3) {
out.writeShort(c0);
out.writeShort(c1);
out.writeShort(c2);
out.writeShort(c3);
}
/**
* Writes five code units to the given output destination.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1 code unit to write
* @param c2 code unit to write
* @param c3 code unit to write
* @param c4 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, short c1,
short c2, short c3, short c4) {
out.writeShort(c0);
out.writeShort(c1);
out.writeShort(c2);
out.writeShort(c3);
out.writeShort(c4);
}
/**
* Writes three code units to the given output destination, where the
* second and third are represented as single int
and emitted
* in little-endian order.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1c2 code unit pair to write
*/
protected static void write(AnnotatedOutput out, short c0, int c1c2) {
write(out, c0, (short) c1c2, (short) (c1c2 >> 16));
}
/**
* Writes four code units to the given output destination, where the
* second and third are represented as single int
and emitted
* in little-endian order.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1c2 code unit pair to write
* @param c3 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, int c1c2,
short c3) {
write(out, c0, (short) c1c2, (short) (c1c2 >> 16), c3);
}
/**
* Writes five code units to the given output destination, where the
* second and third are represented as single int
and emitted
* in little-endian order.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1c2 code unit pair to write
* @param c3 code unit to write
* @param c4 code unit to write
*/
protected static void write(AnnotatedOutput out, short c0, int c1c2,
short c3, short c4) {
write(out, c0, (short) c1c2, (short) (c1c2 >> 16), c3, c4);
}
/**
* Writes five code units to the given output destination, where the
* second through fifth are represented as single long
* and emitted in little-endian order.
*
* @param out {@code non-null;} where to write to
* @param c0 code unit to write
* @param c1c2c3c4 code unit quad to write
*/
protected static void write(AnnotatedOutput out, short c0, long c1c2c3c4) {
write(out, c0, (short) c1c2c3c4, (short) (c1c2c3c4 >> 16),
(short) (c1c2c3c4 >> 32), (short) (c1c2c3c4 >> 48));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy