All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.annimon.stream.IntStream Maven / Gradle / Ivy

There is a newer version: 1.2.2
Show newest version
package com.annimon.stream;

import com.annimon.stream.function.*;
import java.util.Arrays;
import java.util.Comparator;
import java.util.NoSuchElementException;

/**
 * A sequence of primitive int-valued elements supporting sequential operations. This is the {@code int}
 * primitive specialization of {@link Stream}.
 */
@SuppressWarnings("WeakerAccess")
public final class IntStream {

    /**
     * Single instance for empty stream. It is safe for multi-thread environment because it has no content.
     */
    private static final IntStream EMPTY = new IntStream(new PrimitiveIterator.OfInt() {
        @Override
        public int nextInt() {
            return 0;
        }

        @Override
        public boolean hasNext() {
            return false;
        }
    });

    /**
     * Returns an empty stream.
     *
     * @return the empty stream
     */
    public static IntStream empty() {
        return EMPTY;
    }

    /**
     * Creates a {@code IntStream} from {@code PrimitiveIterator.OfInt}.
     *
     * @param iterator  the iterator with elements to be passed to stream
     * @return the new {@code IntStream}
     * @throws NullPointerException if {@code iterator} is null
     */
    public static IntStream of(PrimitiveIterator.OfInt iterator) {
        Objects.requireNonNull(iterator);
        return new IntStream(iterator);
    }

    /**
     * Returns stream whose elements are the specified values.
     *
     * @param values the elements of the new stream
     * @return the new stream
     * @throws NullPointerException if {@code values} is null
     */
    public static IntStream of(final int... values) {
        Objects.requireNonNull(values);
        return new IntStream(new PrimitiveIterator.OfInt() {

            private int index = 0;

            @Override
            public int nextInt() {
                return values[index++];
            }

            @Override
            public boolean hasNext() {
                return index < values.length;
            }
        });
    }

    /**
     * Returns stream which contains single element passed as param
     *
     * @param t element of the stream
     * @return the new stream
     */
    public static IntStream of(final int t) {
        return new IntStream(new PrimitiveIterator.OfInt() {

            private int index = 0;

            @Override
            public int nextInt() {
                index++;
                return t;
            }

            @Override
            public boolean hasNext() {
                return index == 0;
            }
        });
    }

    /**
     * Returns a sequential ordered {@code IntStream} from {@code startInclusive}
     * (inclusive) to {@code endExclusive} (exclusive) by an incremental step of
     * {@code 1}.
     *
     * @param startInclusive the (inclusive) initial value
     * @param endExclusive the exclusive upper bound
     * @return a sequential {@code IntStream} for the range of {@code int}
     *         elements
     */
    public static IntStream range(final int startInclusive, final int endExclusive) {
        if (startInclusive >= endExclusive) {
            return empty();
        }
        return rangeClosed(startInclusive, endExclusive - 1);
    }

    /**
     * Returns a sequential ordered {@code IntStream} from {@code startInclusive}
     * (inclusive) to {@code endInclusive} (inclusive) by an incremental step of
     * {@code 1}.
     *
     * @param startInclusive the (inclusive) initial value
     * @param endInclusive the inclusive upper bound
     * @return a sequential {@code IntStream} for the range of {@code int}
     *         elements
     */
    public static IntStream rangeClosed(final int startInclusive, final int endInclusive) {
        if (startInclusive > endInclusive) {
            return empty();
        } else if (startInclusive == endInclusive) {
            return of(startInclusive);
        } else return new IntStream(new PrimitiveIterator.OfInt() {

            private int current = startInclusive;
            private boolean hasNext = current <= endInclusive;

            @Override
            public boolean hasNext() {
                return hasNext;
            }

            @Override
            public int nextInt() {
                if (current >= endInclusive) {
                    hasNext = false;
                    return endInclusive;
                }
                return current++;
            }
        });
    }

    /**
     * Returns an infinite sequential unordered stream where each element is
     * generated by the provided {@code IntSupplier}.  This is suitable for
     * generating constant streams, streams of random elements, etc.
     *
     * @param s the {@code IntSupplier} for generated elements
     * @return a new infinite sequential {@code IntStream}
     * @throws NullPointerException if {@code s} is null
     */
    public static IntStream generate(final IntSupplier s) {
        Objects.requireNonNull(s);
        return new IntStream(new PrimitiveIterator.OfInt() {
            @Override
            public int nextInt() {
                return s.getAsInt();
            }

            @Override
            public boolean hasNext() {
                return true;
            }
        });
    }

    /**
     * Returns an infinite sequential ordered {@code IntStream} produced by iterative
     * application of a function {@code f} to an initial element {@code seed},
     * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
     * {@code f(f(seed))}, etc.
     *
     * 

The first element (position {@code 0}) in the {@code IntStream} will be * the provided {@code seed}. For {@code n > 0}, the element at position * {@code n}, will be the result of applying the function {@code f} to the * element at position {@code n - 1}. * *

Example: *

     * seed: 1
     * f: (a) -> a + 5
     * result: [1, 6, 11, 16, ...]
     * 
* * @param seed the initial element * @param f a function to be applied to the previous element to produce * a new element * @return a new sequential {@code IntStream} * @throws NullPointerException if {@code f} is null */ public static IntStream iterate(final int seed, final IntUnaryOperator f) { Objects.requireNonNull(f); return new IntStream(new PrimitiveIterator.OfInt() { private int current = seed; @Override public int nextInt() { int old = current; current = f.applyAsInt(current); return old; } @Override public boolean hasNext() { return true; } }); } /** * Creates an {@code IntStream} by iterative application {@code IntUnaryOperator} function * to an initial element {@code seed}, conditioned on satisfying the supplied predicate. * *

Example: *

     * seed: 0
     * predicate: (a) -> a < 20
     * f: (a) -> a + 5
     * result: [0, 5, 10, 15]
     * 
* * @param seed the initial value * @param predicate a predicate to determine when the stream must terminate * @param op operator to produce new element by previous one * @return the new stream * @throws NullPointerException if {@code op} is null * @since 1.1.5 */ public static IntStream iterate(final int seed, final IntPredicate predicate, final IntUnaryOperator op) { Objects.requireNonNull(predicate); return iterate(seed, op).takeWhile(predicate); } /** * Creates a lazily concatenated stream whose elements are all the * elements of the first stream followed by all the elements of the * second stream. * *

Example: *

     * stream a: [1, 2, 3, 4]
     * stream b: [5, 6]
     * result:   [1, 2, 3, 4, 5, 6]
     * 
* * @param a the first stream * @param b the second stream * @return the concatenation of the two input streams * @throws NullPointerException if {@code a} or {@code b} is null */ public static IntStream concat(final IntStream a, final IntStream b) { Objects.requireNonNull(a); Objects.requireNonNull(b); return new IntStream(new PrimitiveIterator.OfInt() { private boolean firstStreamIsCurrent = true; @Override public int nextInt() { return firstStreamIsCurrent ? a.iterator.nextInt() : b.iterator.nextInt(); } @Override public boolean hasNext() { if(firstStreamIsCurrent) { if(a.iterator.hasNext()) return true; firstStreamIsCurrent = false; } return b.iterator.hasNext(); } }); } private final PrimitiveIterator.OfInt iterator; private IntStream(PrimitiveIterator.OfInt iterator) { this.iterator = iterator; } /** * Returns internal {@code IntStream} iterator. * * @return internal {@code IntStream} iterator. */ public PrimitiveIterator.OfInt iterator() { return iterator; } /** * Applies custom operator on stream. * * Transforming function can return {@code IntStream} for intermediate operations, * or any value for terminal operation. * *

Operator examples: *


     *     // Intermediate operator
     *     public class Zip<T> implements Function<IntStream, IntStream> {
     *         @Override
     *         public IntStream apply(IntStream firstStream) {
     *             final PrimitiveIterator.OfInt it1 = firstStream.iterator();
     *             final PrimitiveIterator.OfInt it2 = secondStream.iterator();
     *             return IntStream.of(new PrimitiveIterator.OfInt() {
     *                 @Override
     *                 public boolean hasNext() {
     *                     return it1.hasNext() && it2.hasNext();
     *                 }
     *
     *                 @Override
     *                 public int nextInt() {
     *                     return combiner.applyAsInt(it1.nextInt(), it2.nextInt());
     *                 }
     *             });
     *         }
     *     }
     *
     *     // Intermediate operator based on existing stream operators
     *     public class SkipAndLimit implements UnaryOperator<IntStream> {
     *
     *         private final int skip, limit;
     *
     *         public SkipAndLimit(int skip, int limit) {
     *             this.skip = skip;
     *             this.limit = limit;
     *         }
     *
     *         @Override
     *         public IntStream apply(IntStream stream) {
     *             return stream.skip(skip).limit(limit);
     *         }
     *     }
     *
     *     // Terminal operator
     *     public class Average implements Function<IntStream, Double> {
     *         long count = 0, sum = 0;
     *
     *         @Override
     *         public Double apply(IntStream stream) {
     *             final PrimitiveIterator.OfInt it = stream.iterator();
     *             while (it.hasNext()) {
     *                 count++;
     *                 sum += it.nextInt();
     *             }
     *             return (count == 0) ? 0 : sum / (double) count;
     *         }
     *     }
     * 
* * @param the type of the result * @param function a transforming function * @return a result of the transforming function * @see Stream#custom(com.annimon.stream.function.Function) * @throws NullPointerException if {@code function} is null */ public R custom(final Function function) { Objects.requireNonNull(function); return function.apply(this); } /** * Returns a {@code Stream} consisting of the elements of this stream, * each boxed to an {@code Integer}. * *

This is an lazy intermediate operation. * * @return a {@code Stream} consistent of the elements of this stream, * each boxed to an {@code Integer} */ public Stream boxed() { return Stream.of(iterator); } /** * Returns a stream consisting of the elements of this stream that match * the given predicate. * *

This is an intermediate operation. * *

Example: *

     * predicate: (a) -> a > 2
     * stream: [1, 2, 3, 4, -8, 0, 11]
     * result: [3, 4, 11]
     * 
* * @param predicate non-interfering, stateless predicate to apply to each * element to determine if it should be included * @return the new stream */ public IntStream filter(final IntPredicate predicate) { return new IntStream(new PrimitiveIterator.OfInt() { private int next; @Override public int nextInt() { return next; } @Override public boolean hasNext() { while(iterator.hasNext()) { next = iterator.next(); if(predicate.test(next)) { return true; } } return false; } }); } /** * Returns a stream consisting of the elements of this stream that don't * match the given predicate. * *

This is an intermediate operation. * * @param predicate non-interfering, stateless predicate to apply to each * element to determine if it should not be included * @return the new stream */ public IntStream filterNot(final IntPredicate predicate) { return filter(IntPredicate.Util.negate(predicate)); } /** * Returns an {@code IntStream} consisting of the results of applying the given * function to the elements of this stream. * *

This is an intermediate operation. * *

Example: *

     * mapper: (a) -> a + 5
     * stream: [1, 2, 3, 4]
     * result: [6, 7, 8, 9]
     * 
* * @param mapper a non-interfering stateless function to apply to * each element * @return the new {@code IntStream} */ public IntStream map(final IntUnaryOperator mapper) { return new IntStream(new PrimitiveIterator.OfInt() { @Override public int nextInt() { return mapper.applyAsInt(iterator.nextInt()); } @Override public boolean hasNext() { return iterator.hasNext(); } }); } /** * Returns a {@code Stream} consisting of the results of applying the given * function to the elements of this stream. * *

This is an intermediate operation. * * @param the type result * @param mapper the mapper function used to apply to each element * @return the new {@code Stream} */ public Stream mapToObj(final IntFunction mapper) { return Stream.of(new LsaIterator() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public R nextIteration() { return mapper.apply(iterator.nextInt()); } }); } /** * Returns a {@code LongStream} consisting of the results of applying the given * function to the elements of this stream. * *

This is an intermediate operation. * * @param mapper the mapper function used to apply to each element * @return the new {@code LongStream} * @since 1.1.4 * @see #flatMap(com.annimon.stream.function.IntFunction) */ public LongStream mapToLong(final IntToLongFunction mapper) { return LongStream.of(new PrimitiveIterator.OfLong() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public long nextLong() { return mapper.applyAsLong(iterator.nextInt()); } }); } /** * Returns a {@code DoubleStream} consisting of the results of applying the given * function to the elements of this stream. * *

This is an intermediate operation. * * @param mapper the mapper function used to apply to each element * @return the new {@code DoubleStream} * @since 1.1.4 * @see #flatMap(com.annimon.stream.function.IntFunction) */ public DoubleStream mapToDouble(final IntToDoubleFunction mapper) { return DoubleStream.of(new PrimitiveIterator.OfDouble() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public double nextDouble() { return mapper.applyAsDouble(iterator.nextInt()); } }); } /** * Returns a stream consisting of the results of replacing each element of * this stream with the contents of a mapped stream produced by applying * the provided mapping function to each element. * *

This is an intermediate operation. * *

Example: *

     * mapper: (a) -> [a, a + 5]
     * stream: [1, 2, 3, 4]
     * result: [1, 6, 2, 7, 3, 8, 4, 9]
     * 
* * @param mapper a non-interfering stateless function to apply to each * element which produces an {@code IntStream} of new values * @return the new stream * @see Stream#flatMap(Function) */ public IntStream flatMap(final IntFunction mapper) { return new IntStream(new PrimitiveIterator.OfInt() { private PrimitiveIterator.OfInt inner; @Override public int nextInt() { if (inner == null) { throw new NoSuchElementException(); } return inner.nextInt(); } @Override public boolean hasNext() { if (inner != null && inner.hasNext()) { return true; } while (iterator.hasNext()) { final int arg = iterator.next(); final IntStream result = mapper.apply(arg); if (result == null) { continue; } if (result.iterator.hasNext()) { inner = result.iterator; return true; } } return false; } }); } /** * Returns a stream consisting of the distinct elements of this stream. * *

This is a stateful intermediate operation. * *

Example: *

     * stream: [1, 4, 2, 3, 3, 4, 1]
     * result: [1, 4, 2, 3]
     * 
* * @return the new stream */ public IntStream distinct() { // While functional and quick to implement, this approach is not very efficient. // An efficient version requires an int-specific map/set implementation. return boxed().distinct().mapToInt(UNBOX_FUNCTION); } /** * Returns a stream consisting of the elements of this stream in sorted * order. * *

This is a stateful intermediate operation. * *

Example: *

     * stream: [3, 4, 1, 2]
     * result: [1, 2, 3, 4]
     * 
* * @return the new stream */ public IntStream sorted() { return new IntStream(new PrimitiveExtIterator.OfInt() { private int index = 0; private int[] array; @Override protected void nextIteration() { if (!isInit) { array = toArray(); Arrays.sort(array); } hasNext = index < array.length; if (hasNext) { next = array[index++]; } } }); } /** * Returns {@code IntStream} with sorted elements (as determinated by provided {@code Comparator}). * *

This is a stateful intermediate operation. * *

Example: *

     * comparator: (a, b) -> -a.compareTo(b)
     * stream: [1, 2, 3, 4]
     * result: [4, 3, 2, 1]
     * 
* * @param comparator the {@code Comparator} to compare elements * @return the new {@code IntStream} */ public IntStream sorted(Comparator comparator) { return boxed().sorted(comparator).mapToInt(UNBOX_FUNCTION); } /** * Samples the {@code IntStream} by emitting every n-th element. * *

This is an intermediate operation. * *

Example: *

     * stepWidth: 3
     * stream: [1, 2, 3, 4, 5, 6, 7, 8]
     * result: [1, 4, 7]
     * 
* * @param stepWidth step width * @return the new {@code IntStream} * @throws IllegalArgumentException if {@code stepWidth} is zero or negative * @see Stream#sample(int) */ public IntStream sample(final int stepWidth) { if (stepWidth <= 0) throw new IllegalArgumentException("stepWidth cannot be zero or negative"); if (stepWidth == 1) return this; return new IntStream(new PrimitiveIterator.OfInt() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public int nextInt() { final int result = iterator.nextInt(); int skip = 1; while (skip < stepWidth && iterator.hasNext()) { iterator.nextInt(); skip++; } return result; } }); } /** * Returns a stream consisting of the elements of this stream, additionally * performing the provided action on each element as elements are consumed * from the resulting stream. Handy method for debugging purposes. * *

This is an intermediate operation. * * @param action the action to be performed on each element * @return the new stream */ public IntStream peek(final IntConsumer action) { return new IntStream(new PrimitiveIterator.OfInt() { @Override public int nextInt() { int value = iterator.nextInt(); action.accept(value); return value; } @Override public boolean hasNext() { return iterator.hasNext(); } }); } /** * Takes elements while the predicate is true. * *

This is an intermediate operation. * *

Example: *

     * predicate: (a) -> a < 3
     * stream: [1, 2, 3, 4, 1, 2, 3, 4]
     * result: [1, 2]
     * 
* * @param predicate the predicate used to take elements * @return the new {@code IntStream} */ public IntStream takeWhile(final IntPredicate predicate) { return new IntStream(new PrimitiveExtIterator.OfInt() { @Override protected void nextIteration() { hasNext = iterator.hasNext() && predicate.test(next = iterator.next()); } }); } /** * Drops elements while the predicate is true and returns the rest. * *

This is an intermediate operation. * *

Example: *

     * predicate: (a) -> a < 3
     * stream: [1, 2, 3, 4, 1, 2, 3, 4]
     * result: [3, 4, 1, 2, 3, 4]
     * 
* * @param predicate the predicate used to drop elements * @return the new {@code IntStream} */ public IntStream dropWhile(final IntPredicate predicate) { return new IntStream(new PrimitiveExtIterator.OfInt() { @Override protected void nextIteration() { if (!isInit) { // Skip first time while (hasNext = iterator.hasNext()) { next = iterator.next(); if (!predicate.test(next)) { return; } } } hasNext = hasNext && iterator.hasNext(); if (!hasNext) return; next = iterator.next(); } }); } /** * Returns a stream consisting of the elements of this stream, truncated * to be no longer than {@code maxSize} in length. * *

This is a short-circuiting stateful intermediate operation. * *

Example: *

     * maxSize: 3
     * stream: [1, 2, 3, 4, 5]
     * result: [1, 2, 3]
     *
     * maxSize: 10
     * stream: [1, 2]
     * result: [1, 2]
     * 
* * @param maxSize the number of elements the stream should be limited to * @return the new stream * @throws IllegalArgumentException if {@code maxSize} is negative */ public IntStream limit(final long maxSize) { if (maxSize < 0) { throw new IllegalArgumentException("maxSize cannot be negative"); } if (maxSize == 0) { return IntStream.empty(); } return new IntStream(new PrimitiveIterator.OfInt() { private long index = 0; @Override public int nextInt() { index++; return iterator.nextInt(); } @Override public boolean hasNext() { return (index < maxSize) && iterator.hasNext(); } }); } /** * Returns a stream consisting of the remaining elements of this stream * after discarding the first {@code n} elements of the stream. * If this stream contains fewer than {@code n} elements then an * empty stream will be returned. * *

This is a stateful intermediate operation. * *

Example: *

     * n: 3
     * stream: [1, 2, 3, 4, 5]
     * result: [4, 5]
     *
     * n: 10
     * stream: [1, 2]
     * result: []
     * 
* * @param n the number of leading elements to skip * @return the new stream * @throws IllegalArgumentException if {@code n} is negative */ public IntStream skip(final long n) { if(n < 0) throw new IllegalArgumentException("n cannot be negative"); if(n == 0) return this; else return new IntStream(new PrimitiveIterator.OfInt() { long skipped = 0; @Override public int nextInt() { return iterator.nextInt(); } @Override public boolean hasNext() { while(iterator.hasNext()) { if(skipped == n) break; skipped++; iterator.nextInt(); } return iterator.hasNext(); } }); } /** * Performs an action for each element of this stream. * *

This is a terminal operation. * * @param action a non-interfering action to perform on the elements */ public void forEach(IntConsumer action) { while(iterator.hasNext()) { action.accept(iterator.nextInt()); } } /** * Performs a reduction on the elements of this stream, using the provided * identity value and an associative accumulation function, and returns the * reduced value. * *

The {@code identity} value must be an identity for the accumulator * function. This means that for all {@code x}, * {@code accumulator.apply(identity, x)} is equal to {@code x}. * The {@code accumulator} function must be an associative function. * *

This is a terminal operation. * *

Example: *

     * identity: 0
     * accumulator: (a, b) -> a + b
     * stream: [1, 2, 3, 4, 5]
     * result: 15
     * 
* * @param identity the identity value for the accumulating function * @param op an associative non-interfering stateless function for * combining two values * @return the result of the reduction * @see #sum() * @see #min() * @see #max() */ public int reduce(int identity, IntBinaryOperator op) { int result = identity; while(iterator.hasNext()) { int value = iterator.nextInt(); result = op.applyAsInt(result, value); } return result; } /** * Performs a reduction on the elements of this stream, using an * associative accumulation function, and returns an {@code OptionalInt} * describing the reduced value, if any. * *

The {@code op} function must be an associative function. * *

This is a terminal operation. * * @param op an associative, non-interfering, stateless function for * combining two values * @return the result of the reduction * @see #reduce(int, IntBinaryOperator) */ public OptionalInt reduce(IntBinaryOperator op) { boolean foundAny = false; int result = 0; while(iterator.hasNext()) { int value = iterator.nextInt(); if(!foundAny) { foundAny = true; result = value; } else { result = op.applyAsInt(result, value); } } return foundAny ? OptionalInt.of(result) : OptionalInt.empty(); } /** * Returns an array containing the elements of this stream. * *

This is a terminal operation. * * @return an array containing the elements of this stream */ public int[] toArray() { SpinedBuffer.OfInt b = new SpinedBuffer.OfInt(); forEach(b); return b.asPrimitiveArray(); } /** * Collects elements to {@code supplier} provided container by applying the given accumulation function. * *

This is a terminal operation. * * @param the type of the result * @param supplier the supplier function that provides container * @param accumulator the accumulation function * @return the result of collect elements * @see Stream#collect(com.annimon.stream.function.Supplier, com.annimon.stream.function.BiConsumer) */ public R collect(Supplier supplier, ObjIntConsumer accumulator) { R result = supplier.get(); while (iterator.hasNext()) { final int value = iterator.nextInt(); accumulator.accept(result, value); } return result; } /** * Returns the sum of elements in this stream. * * @return the sum of elements in this stream */ public int sum() { int sum = 0; while(iterator.hasNext()) { sum += iterator.nextInt(); } return sum; } /** * Returns an {@code OptionalInt} describing the minimum element of this * stream, or an empty optional if this stream is empty. * *

This is a terminal operation. * * @return an {@code OptionalInt} containing the minimum element of this * stream, or an empty {@code OptionalInt} if the stream is empty */ public OptionalInt min() { return reduce(new IntBinaryOperator() { @Override public int applyAsInt(int left, int right) { return left < right ? left : right; } }); } /** * Returns an {@code OptionalInt} describing the maximum element of this * stream, or an empty optional if this stream is empty. * *

This is a terminal operation. * * @return an {@code OptionalInt} containing the maximum element of this * stream, or an empty {@code OptionalInt} if the stream is empty */ public OptionalInt max() { return reduce(new IntBinaryOperator() { @Override public int applyAsInt(int left, int right) { return left > right ? left : right; } }); } /** * Returns the count of elements in this stream. * *

This is a terminal operation. * * @return the count of elements in this stream */ public long count() { long count = 0; while(iterator.hasNext()) { iterator.nextInt(); count++; } return count; } /** * Returns whether any elements of this stream match the provided * predicate. May not evaluate the predicate on all elements if not * necessary for determining the result. If the stream is empty then * {@code false} is returned and the predicate is not evaluated. * *

This is a short-circuiting terminal operation. * *

Example: *

     * predicate: (a) -> a == 5
     * stream: [1, 2, 3, 4, 5]
     * result: true
     *
     * predicate: (a) -> a == 5
     * stream: [5, 5, 5]
     * result: true
     * 
* * @param predicate a non-interfering stateless predicate to apply * to elements of this stream * @return {@code true} if any elements of the stream match the provided * predicate, otherwise {@code false} */ public boolean anyMatch(IntPredicate predicate) { while(iterator.hasNext()) { if(predicate.test(iterator.nextInt())) return true; } return false; } /** * Returns whether all elements of this stream match the provided predicate. * May not evaluate the predicate on all elements if not necessary for * determining the result. If the stream is empty then {@code true} is * returned and the predicate is not evaluated. * *

This is a short-circuiting terminal operation. * *

Example: *

     * predicate: (a) -> a == 5
     * stream: [1, 2, 3, 4, 5]
     * result: false
     *
     * predicate: (a) -> a == 5
     * stream: [5, 5, 5]
     * result: true
     * 
* * @param predicate a non-interfering stateless predicate to apply to * elements of this stream * @return {@code true} if either all elements of the stream match the * provided predicate or the stream is empty, otherwise {@code false} */ public boolean allMatch(IntPredicate predicate) { while(iterator.hasNext()) { if(!predicate.test(iterator.nextInt())) return false; } return true; } /** * Returns whether no elements of this stream match the provided predicate. * May not evaluate the predicate on all elements if not necessary for * determining the result. If the stream is empty then {@code true} is * returned and the predicate is not evaluated. * *

This is a short-circuiting terminal operation. * *

Example: *

     * predicate: (a) -> a == 5
     * stream: [1, 2, 3, 4, 5]
     * result: false
     *
     * predicate: (a) -> a == 5
     * stream: [1, 2, 3]
     * result: true
     * 
* * @param predicate a non-interfering stateless predicate to apply to * elements of this stream * @return {@code true} if either no elements of the stream match the * provided predicate or the stream is empty, otherwise {@code false} */ public boolean noneMatch(IntPredicate predicate) { while (iterator.hasNext()) { if (predicate.test(iterator.nextInt())) return false; } return true; } /** * Returns an {@link OptionalInt} describing the first element of this * stream, or an empty {@code OptionalInt} if the stream is empty. * *

This is a short-circuiting terminal operation. * * @return an {@code OptionalInt} describing the first element of this stream, * or an empty {@code OptionalInt} if the stream is empty */ public OptionalInt findFirst() { if(iterator.hasNext()) { return OptionalInt.of(iterator.nextInt()); } else { return OptionalInt.empty(); } } /** * Returns the single element of stream. * If stream is empty, throws {@code NoSuchElementException}. * If stream contains more than one element, throws {@code IllegalStateException}. * *

This is a short-circuiting terminal operation. * *

Example: *

     * stream: []
     * result: NoSuchElementException
     *
     * stream: [1]
     * result: 1
     *
     * stream: [1, 2, 3]
     * result: IllegalStateException
     * 
* * @return single element of stream * @throws NoSuchElementException if stream is empty * @throws IllegalStateException if stream contains more than one element * @since 1.1.3 */ public int single() { if (iterator.hasNext()) { int singleCandidate = iterator.next(); if (iterator.hasNext()) { throw new IllegalStateException("IntStream contains more than one element"); } else { return singleCandidate; } } else { throw new NoSuchElementException("IntStream contains no element"); } } /** * Returns the single element wrapped by {@code OptionalInt} class. * If stream is empty, returns {@code OptionalInt.empty()}. * If stream contains more than one element, throws {@code IllegalStateException}. * *

This is a short-circuiting terminal operation. * *

Example: *

     * stream: []
     * result: OptionalInt.empty()
     *
     * stream: [1]
     * result: OptionalInt.of(1)
     *
     * stream: [1, 2, 3]
     * result: IllegalStateException
     * 
* * @return an {@code OptionalInt} with single element or {@code OptionalInt.empty()} if stream is empty * @throws IllegalStateException if stream contains more than one element * @since 1.1.3 */ public OptionalInt findSingle() { if (iterator.hasNext()) { int singleCandidate = iterator.next(); if (iterator.hasNext()) { throw new IllegalStateException("IntStream contains more than one element"); } else { return OptionalInt.of(singleCandidate); } } else { return OptionalInt.empty(); } } private static final ToIntFunction UNBOX_FUNCTION = new ToIntFunction() { @Override public int applyAsInt(Integer t) { return t; } }; }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy