com.aparapi.examples.matrix.CorrMatrixHost Maven / Gradle / Ivy
/**
* Copyright (c) 2016 - 2017 Syncleus, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* This material was prepared as an account of work sponsored by an agency of the United States Government.
* Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of
* their employees, nor any jurisdiction or organization that has cooperated in the development of these materials,
* makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
* completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents
* that its use would not infringe privately owned rights.
*/
package com.aparapi.examples.matrix;
import org.apache.log4j.Logger;
import com.aparapi.Kernel;
import com.aparapi.Kernel.EXECUTION_MODE;
import com.aparapi.Range;
import com.aparapi.device.Device;
import com.aparapi.device.OpenCLDevice;
/**
* GPU calculations using OpenBitSet Intersection for OpenBitSets
*
* Based on code from:
* {@link http://grepcode.com/file/repo1.maven.org/maven2/org.apache.lucene/lucene-core/3.1.0/org/apache/lucene/util/BitUtil.java}
*
* @author ryan.lamothe at gmail.com
* @author sedillard at gmail.com
*/
public class CorrMatrixHost {
private static final Logger LOG = Logger.getLogger(CorrMatrixHost.class);
/**
* Perform matrix intersection for two lists of Lucene OpenBitSet-based packed longs
*
* @param matrixA
* The first term-document matrix
* @param matrixB
* The second term-document matrix
* @param Aparapi EXECUTION_MODE
* @return result Matrix
* @throws Exception
*/
public static int[][] intersectionMatrix(final long[][] matrixA, final long[][] matrixB, final EXECUTION_MODE executionMode) {
// Basic validation
if (matrixA == null) {
throw new NullPointerException("MatrixA cannot be NULL");
}
if (matrixB == null) {
throw new NullPointerException("MatrixB cannot be NULL");
}
// Size of an array is 8 bytes for the object + 4 bytes for the header and length information
final int arrayMemOverhead = 12;
// numDocs/64 since they are packed into longs
// We need to make our matrix sizes multiples of BLOCK_SIZE
final int matrixA_numTerms = matrixA.length;
final int matrixA_numLongs = matrixA[0].length;
if (LOG.isDebugEnabled()) {
LOG.debug("----------");
LOG.debug("MatrixA NumTerms (Rows): " + matrixA_numTerms);
LOG.debug("MatrixA NumLongs (Columns): " + matrixA_numLongs);
LOG.debug("MatrixA NumDocs: " + (matrixA_numLongs * 64L));
}
final long matrixA_BytesPerRow = matrixA_numLongs * 8L;
final long matrixA_TotalBytes = (matrixA_numTerms * matrixA_BytesPerRow) + arrayMemOverhead;
if (LOG.isDebugEnabled()) {
LOG.debug("MatrixA Total Memory Size: " + humanReadableByteCount(matrixA_TotalBytes, true));
}
final int matrixB_numTerms = matrixB.length;
final int matrixB_numLongs = matrixB[0].length;
if (LOG.isDebugEnabled()) {
LOG.debug("----------");
LOG.debug("MatrixB NumTerms (Rows): " + matrixB_numTerms);
LOG.debug("MatrixB NumLongs (Columns): " + matrixB_numLongs);
LOG.debug("MatrixB NumDocs: " + (matrixB_numLongs * 64L));
}
final long matrixB_BytesPerRow = matrixB_numLongs * 8L;
final long matrixB_TotalBytes = (matrixB_numTerms * matrixB_BytesPerRow) + arrayMemOverhead;
if (LOG.isDebugEnabled()) {
LOG.debug("MatrixB Total Memory Size: " + humanReadableByteCount(matrixB_TotalBytes, true));
LOG.debug("----------");
}
final int[][] resultMatrix = new int[matrixA_numTerms][matrixB_numTerms];
if (LOG.isDebugEnabled()) {
final long resultMatrix_TotalBytes = (matrixA_numTerms * matrixB_numTerms * 4L) + arrayMemOverhead;
LOG.debug("ResultMatrix Memory Size: " + humanReadableByteCount(resultMatrix_TotalBytes, true));
LOG.debug("Total Requested Memory Size: " + humanReadableByteCount(matrixA_TotalBytes + matrixB_TotalBytes + resultMatrix_TotalBytes, true));
LOG.debug("----------");
}
int NUM_SUB_ROWS = matrixA_numTerms; // Default number of sub-rows
OpenCLDevice device = null;
// We do not test for EXECUTION_MODE.JTP because JTP is non-OpenCL
if (executionMode.equals(EXECUTION_MODE.CPU)) {
device = (OpenCLDevice) Device.firstCPU();
if (device == null) {
LOG.warn("OpenCLDevice.CPU is NULL...OpenCL is unavailable. Setting to JTP mode.");
LOG.debug("----------");
}
} else if (executionMode.equals(EXECUTION_MODE.GPU)) {
device = (OpenCLDevice) Device.best();
if (device == null) {
LOG.warn("OpenCLDevice.GPU is NULL...OpenCL is unavailable. Setting to JTP mode.");
LOG.debug("----------");
}
}
// This is to create stripes of rows that will fit into OpenCL's available memory
// Calculate the number of sub-rows by calling OpenCL to find out available memory
// Length of row * 8 (size of long in bytes) * number of rows to available memory
final int maxNumTerms = Math.max(matrixA_numTerms, matrixB_numTerms);
if (device != null) {
final long globalMemSize = device.getGlobalMemSize();
// final long maxMemAllocSize = Math.max((globalMemSize/4), 128*1024*1024);
final long maxMemAllocSize = device.getMaxMemAllocSize();
// 1048576 bytes in a megabyte (1024*1024)
// Java long is 8 bytes
// 131072 longs in 1 megabyte
// SAFE OpenCL spec allocation is max(1/4 GlobalMemSize)
// ***During our testing this appears to be incorrectly/inconsistently reported depending on os/drivers/hardware***
if (LOG.isDebugEnabled()) {
LOG.debug("Available OpenCL globalMemSize: " + humanReadableByteCount(globalMemSize, true));
LOG.debug("Available OpenCL maxMemAllocSize: " + humanReadableByteCount(maxMemAllocSize, true));
}
// Maybe there is a more clever way to do this :)
// The idea here is to decide how many sub-rows of the matrix we can fit on a single card
// The long-term goal to divide up the work for both small RAM GPUs and multiple GPUs
int subRowsCounterA = 0;
int subRowsCounterB = 0;
long subRowsMemSizeA = 0L;
long subRowsMemSizeB = 0L;
long subResultMatrixMemSize = 0L;
long subTotalMemSize = 0L;
do {
if (subRowsCounterA < matrixA_numTerms) {
subRowsMemSizeA = subRowsCounterA != 0 ? (subRowsCounterA * matrixA_numLongs * 8L) + arrayMemOverhead : 0;
subRowsCounterA += 1;
} else if (subRowsCounterA == matrixA_numTerms) {
subRowsMemSizeA = subRowsCounterA != 0 ? (subRowsCounterA * matrixA_numLongs * 8L) + arrayMemOverhead : 0;
}
if (subRowsCounterB < matrixB_numTerms) {
subRowsMemSizeB = subRowsCounterB != 0 ? (subRowsCounterB * matrixB_numLongs * 8L) + arrayMemOverhead : 0;
subRowsCounterB += 1;
} else if (subRowsCounterB == matrixB_numTerms) {
subRowsMemSizeB = subRowsCounterB != 0 ? (subRowsCounterB * matrixB_numLongs * 8L) + arrayMemOverhead : 0;
}
// This is 4 bytes since the sub-result matrix is an int array
subResultMatrixMemSize = ((subRowsCounterA * subRowsCounterB) * 4L) + arrayMemOverhead;
subTotalMemSize = subRowsMemSizeA + subRowsMemSizeB + subResultMatrixMemSize;
} while ((Math.max(subRowsCounterA, subRowsCounterB) < maxNumTerms) && (subTotalMemSize <= maxMemAllocSize));
// If using OpenCL override the default number of subrows
NUM_SUB_ROWS = Math.max(subRowsCounterA, subRowsCounterB);
if (NUM_SUB_ROWS < maxNumTerms) {
final long subMatrixA_memSize = (NUM_SUB_ROWS * matrixA_numLongs * 8L) + arrayMemOverhead;
final long subMatrixB_memSize = (NUM_SUB_ROWS * matrixB_numLongs * 8L) + arrayMemOverhead;
final long subResultMatrix_memSize = (NUM_SUB_ROWS * NUM_SUB_ROWS * 4L) + arrayMemOverhead;
LOG.warn("****************************************************************");
LOG.warn("Requested matrix computation is larger than available OpenCL memory");
LOG.warn("Matrix striping is occurring to fit all data into OpenCL memory...");
LOG.warn("");
LOG.warn("Number rows requested: " + maxNumTerms);
LOG.warn("Number rows that fit: " + NUM_SUB_ROWS);
LOG.warn("");
LOG.warn("SubMatrixA Memory Size: " + humanReadableByteCount(subMatrixA_memSize, true));
LOG.warn("SubMatrixB Memory Size: " + humanReadableByteCount(subMatrixB_memSize, true));
LOG.warn("SubResultMatrix Memory Size: " + humanReadableByteCount(subResultMatrix_memSize, true));
LOG.warn("SubMatrix Total Memory Size: " + humanReadableByteCount(subMatrixA_memSize + subMatrixB_memSize + subResultMatrix_memSize, true));
LOG.warn("****************************************************************");
}
}
final int numSubBlocksA = ((matrixA_numTerms + NUM_SUB_ROWS) - 1) / NUM_SUB_ROWS;
final int numSubBlocksB = ((matrixB_numTerms + NUM_SUB_ROWS) - 1) / NUM_SUB_ROWS;
final long[] subMatrixA = new long[NUM_SUB_ROWS * matrixA_numLongs];
final long[] subMatrixB = new long[NUM_SUB_ROWS * matrixB_numLongs];
final int[] subResultMatrix = new int[NUM_SUB_ROWS * NUM_SUB_ROWS];
final CorrMatrixKernel kernel = new CorrMatrixKernel(subMatrixA, NUM_SUB_ROWS, subMatrixB, NUM_SUB_ROWS, matrixA_numLongs, subResultMatrix);
kernel.setExplicit(true);
// Here we define a fall-back strategy, since the user may have wanted to execute only a single execution mode
if (executionMode.equals(EXECUTION_MODE.GPU) && (device != null)) {
kernel.addExecutionModes(EXECUTION_MODE.GPU, EXECUTION_MODE.CPU, EXECUTION_MODE.JTP);
LOG.debug("Execution Fallback Strategy: GPU --> CPU --> JTP");
} else if (executionMode.equals(EXECUTION_MODE.CPU) && (device != null)) {
kernel.addExecutionModes(EXECUTION_MODE.CPU, EXECUTION_MODE.JTP);
LOG.debug("Execution Fallback Strategy: CPU --> JTP");
} else {
kernel.addExecutionModes(EXECUTION_MODE.JTP);
LOG.debug("Execution Strategy: JTP");
}
try {
for (int a = 0; a < numSubBlocksA; a++) {
for (int b = 0; b < numSubBlocksB; b++) {
final int aSubRowStart = a * NUM_SUB_ROWS;
final int aSubRowEnd = Math.min(matrixA_numTerms, aSubRowStart + NUM_SUB_ROWS);
for (int i = aSubRowStart; i < aSubRowEnd; i++) {
if (matrixA_numLongs != matrixA[i].length) {
throw new IllegalStateException("All rows in the matrix need be the same length");
}
System.arraycopy(matrixA[i], 0, subMatrixA, (i - aSubRowStart) * matrixA_numLongs, matrixA_numLongs);
}
final int bSubRowStart = b * NUM_SUB_ROWS;
final int bSubRowEnd = Math.min(matrixB_numTerms, bSubRowStart + NUM_SUB_ROWS);
for (int i = bSubRowStart; i < bSubRowEnd; i++) {
if (matrixA_numLongs != matrixB[i].length) {
throw new IllegalStateException("All rows in the matrix need be the same length");
}
System.arraycopy(matrixB[i], 0, subMatrixB, (i - bSubRowStart) * matrixB_numLongs, matrixB_numLongs);
}
// Since matrixA_NumLongs == matrixB_NumLongs we're only going to pass matrixA_NumLongs
executeKernel(device, subMatrixA, aSubRowEnd - aSubRowStart, subMatrixB, bSubRowEnd - bSubRowStart, matrixA_numLongs, subResultMatrix, kernel);
// Convert one dimensional array to two dimensional array in the expected output ordering
for (int i = 0; i < NUM_SUB_ROWS; i++) {
if ((i + aSubRowStart) < aSubRowEnd) {
System.arraycopy(subResultMatrix, i * NUM_SUB_ROWS, resultMatrix[i + aSubRowStart], bSubRowStart, bSubRowEnd - bSubRowStart);
}
}
}
}
} finally {
if (LOG.isDebugEnabled()) {
LOG.debug("----------");
LOG.debug("Aparapi Gross Execution Time: " + kernel.getAccumulatedExecutionTime() + " ms <------ Aparapi");
LOG.debug("OpenCL Generation Time: " + kernel.getConversionTime() + " ms");
LOG.debug("Kernel Net Execution Time: " + (kernel.getAccumulatedExecutionTime() - kernel.getConversionTime()) + " ms");
LOG.debug("----------");
}
try {
kernel.dispose();
} catch (final UnsatisfiedLinkError e) {
LOG.error("Aparapi failed to dispose of the kernel", e);
}
}
return resultMatrix;
}
/**
* Execute the GPU kernel
*
* @param subMatrixA
* @param matrixA_NumTerms
* @param subMatrixB
* @param matrixB_NumTerms
* @param numLongs
* @param subResultMatrix
* @param kernel
*
* @return resultMatrix
*/
private static void executeKernel(final Device device, final long[] subMatrixA, final int matrixA_NumTerms, final long[] subMatrixB, final int matrixB_NumTerms, final int numLongs, final int[] subResultMatrix, final Kernel kernel) {
// Power of Two for best performance
int matrixA_NumTermsRnd = matrixA_NumTerms;
while (!isPowerOfTwo(matrixA_NumTermsRnd)) {
matrixA_NumTermsRnd += 1;
}
int matrixB_NumTermsRnd = matrixB_NumTerms;
while (!isPowerOfTwo(matrixB_NumTermsRnd)) {
matrixB_NumTermsRnd += 1;
}
final Range range;
if (device != null) {
range = Range.create2D(device, matrixA_NumTermsRnd, matrixB_NumTermsRnd);
} else {
range = Range.create2D(matrixA_NumTermsRnd, matrixB_NumTermsRnd);
}
if (LOG.isDebugEnabled()) {
LOG.debug("Range: " + range);
}
kernel.put(subMatrixA);
kernel.put(subMatrixB);
kernel.put(subResultMatrix);
kernel.execute(range);
kernel.get(subResultMatrix);
}
/**
* Highly efficient means to compute whether a number is a power of 2
* Based on code from http://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2
*
* Another very cool way to do this is ((x&(-x))==x)
*
* @param n
* @return boolean
*/
private static boolean isPowerOfTwo(int n) {
return (n > 0) && ((n & (n - 1)) == 0);
}
/**
* Rounds a number to the multiple indicated
*
* @param num
* @param multiple
* @return
*/
private static int roundToMultiple(double num, int multiple) {
return (int) (Math.ceil(num / multiple) * multiple);
}
/**
* Very nice means to convert byte sizes into human readable format
* Based on code from http://stackoverflow.com/questions/3758606/how-to-convert-byte-size-into-human-readable-format-in-java
*
*
* @param bytes
* @param si
* @return humanReadableByteCount
*/
private static String humanReadableByteCount(long bytes, boolean si) {
final int unit = si ? 1000 : 1024;
if (bytes < unit) {
return bytes + " B";
}
final int exp = (int) (Math.log(bytes) / Math.log(unit));
final String pre = (si ? "kMGTPE" : "KMGTPE").charAt(exp - 1) + (si ? "" : "i");
return String.format("%.1f %sB", bytes / Math.pow(unit, exp), pre);
}
}