com.apporiented.algorithm.clustering.ClusterPair Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hierarchical-clustering Show documentation
Show all versions of hierarchical-clustering Show documentation
Agglomerative hierarchical clustering analysis and visualization implemented in Java
/*******************************************************************************
* Copyright 2013 Lars Behnke
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.apporiented.algorithm.clustering;
public class ClusterPair implements Comparable {
private static long globalIndex = 0;
private Cluster lCluster;
private Cluster rCluster;
private Double linkageDistance;
public ClusterPair(){
}
public ClusterPair(Cluster left, Cluster right, Double distance) {
lCluster=left;
rCluster=right;
linkageDistance=distance;
}
public Cluster getOtherCluster(Cluster c) {
return lCluster == c ? rCluster : lCluster;
}
public Cluster getlCluster() {
return lCluster;
}
public void setlCluster(Cluster lCluster) {
this.lCluster = lCluster;
}
public Cluster getrCluster() {
return rCluster;
}
public void setrCluster(Cluster rCluster) {
this.rCluster = rCluster;
}
public Double getLinkageDistance() {
return linkageDistance;
}
public void setLinkageDistance(Double distance) {
this.linkageDistance = distance;
}
/**
* @return a new ClusterPair with the two left/right inverted
*/
public ClusterPair reverse() {
return new ClusterPair(getrCluster(), getlCluster(), getLinkageDistance());
}
@Override
public int compareTo(ClusterPair o) {
int result;
if (o == null || o.getLinkageDistance() == null) {
result = -1;
} else if (getLinkageDistance() == null) {
result = 1;
} else {
result = getLinkageDistance().compareTo(o.getLinkageDistance());
}
return result;
}
public Cluster agglomerate(String name) {
if (name == null) {
name = "clstr#" + (++globalIndex);
/*
StringBuilder sb = new StringBuilder();
if (lCluster != null) {
sb.append(lCluster.getName());
}
if (rCluster != null) {
if (sb.length() > 0) {
sb.append("&");
}
sb.append(rCluster.getName());
}
name = sb.toString();
*/
}
Cluster cluster = new Cluster(name);
cluster.setDistance(new Distance(getLinkageDistance()));
cluster.addChild(lCluster);
cluster.addChild(rCluster);
lCluster.setParent(cluster);
rCluster.setParent(cluster);
Double lWeight = lCluster.getWeightValue();
Double rWeight = rCluster.getWeightValue();
double weight = lWeight + rWeight;
cluster.getDistance().setWeight(weight);
return cluster;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
if (lCluster != null) {
sb.append(lCluster.getName());
}
if (rCluster != null) {
if (sb.length() > 0) {
sb.append(" + ");
}
sb.append(rCluster.getName());
}
sb.append(" : ").append(linkageDistance);
return sb.toString();
}
}