cheshire.likelihood.laws.PartitionTests.scala Maven / Gradle / Ivy
/*
* Copyright 2021 Arman Bilge
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cheshire.likelihood
package laws
import algebra.ring.Field
import cats.Monad
import cats.kernel.Eq
import cats.kernel.Order
import cats.kernel.laws.discipline.CommutativeSemigroupTests
import cats.syntax.all.*
import cheshire.likelihood.laws.testkit.*
import eu.timepit.refined.api.Refined
import eu.timepit.refined.auto.*
import eu.timepit.refined.numeric.NonNegative
import eu.timepit.refined.numeric.Positive
import org.scalacheck.Arbitrary
import org.scalacheck.Prop.forAll
import org.scalacheck.util.Pretty
import org.typelevel.discipline.Laws
object PartitionTests:
def apply[F[_]: Monad, R: Field: Order, Model, Matrix, Ppv, NodeClv, TipClv](
partition: Partition.Aux[F, R, Model, Matrix, Ppv, NodeClv, TipClv])
: PartitionTests[F, R, Model, Matrix, Ppv, NodeClv, TipClv] =
new PartitionTests(PartitionLaws(partition)) {}
trait PartitionTests[F[_], R: Order, Model, Matrix, Ppv, NodeClv, TipClv](
val laws: PartitionLaws[F, R, Model, Matrix, Ppv, NodeClv, TipClv]
) extends Laws:
self =>
type PositiveR = R Refined Positive
type NonNegativeR = R Refined NonNegative
import laws.F
import laws.*
def partition(
using Eq[F[R]],
Eq[F[LikelihoodEvaluation[F, R]]],
Eq[F[Ppv]],
Eq[F[Clv]],
Arbitrary[R],
Arbitrary[PositiveR],
Arbitrary[NonNegativeR],
Arbitrary[Freqs[R]],
Arbitrary[Params[R]],
Arbitrary[NodeHeights[R]],
Arbitrary[F[Ppv]],
Arbitrary[F[Clv]],
F[Model] => Pretty,
F[Matrix] => Pretty,
F[Ppv] => Pretty,
F[Clv] => Pretty
): RuleSet =
given arbModel: Arbitrary[F[Model]] = arbitraryModel(laws.partition)
given arbMatrix: Arbitrary[F[Matrix]] = arbitraryMatrix(laws.partition)
new:
val name = "partition"
val bases = Nil
val parents = Nil
val props = List(
"mean rate is rate" -> forAll {
(freqs: Freqs[R], params: Params[R], rate: PositiveR, alpha: PositiveR) =>
laws.meanRate(freqs.freqs, params.params, rate, alpha)
},
"forecast identity" -> forAll(laws.forecastIdentity),
"equilibrium identity" -> forAll { (model: F[Model], t: PositiveR) =>
laws.equilibriumIdentity(model, t)
},
"forecast scale invariance" -> forAll {
(
ppv: F[Ppv],
freqs: Freqs[R],
params: Params[R],
alpha: PositiveR,
x: PositiveR,
y: PositiveR) =>
laws.forecastScaleInvariance(ppv, freqs.freqs, params.params, alpha, x, y)
},
"forecast compatibility" -> forAll {
(model: F[Model], ppv: F[Ppv], s: PositiveR, t: PositiveR) =>
laws.forecastCompatibility(model, ppv, s, t)
},
"forecast commutativity" -> forAll {
(model: F[Model], ppv: F[Ppv], s: PositiveR, t: PositiveR) =>
laws.forecastCommutativity(model, ppv, s, t)
},
"backcast identity" -> forAll(laws.backcastIdentity),
"backcast scale invariance" -> forAll {
(
clv: F[Clv],
freqs: Freqs[R],
params: Params[R],
alpha: PositiveR,
x: PositiveR,
y: PositiveR) =>
laws.backcastScaleInvariance(clv, freqs.freqs, params.params, alpha, x, y)
},
"backcast compatibility" -> forAll {
(model: F[Model], clv: F[Clv], s: PositiveR, t: PositiveR) =>
laws.backcastCompatibility(model, clv, s, t)
},
"backcast commutativity" -> forAll {
(model: F[Model], clv: F[Clv], s: PositiveR, t: PositiveR) =>
laws.backcastCommutativity(model, clv, s, t)
},
"ppv product compatibility" -> forAll(laws.ppvProductCompatibility)
) ++ (new CommutativeSemigroupTests[F[Clv]] { val laws = self.laws.clvProductLaws })
.commutativeSemigroup
.all
.properties ++
List(
"backcast product consistency" -> forAll(laws.backcastProductConsistency),
"backcast product commutativity" -> forAll(laws.backcastProductCommutativity),
"seed and integrate consistency" -> forAll(laws.seedAndIntegrateConsistency),
"forecast backcast consistency" -> forAll {
(model: F[Model], ppv: F[Ppv], clv: F[Clv], t: PositiveR) =>
laws.forecastBackcastConsistency(model, ppv, clv, t)
},
"edge likelihood consistency" -> forAll {
(model: F[Model], ppv: F[Ppv], clv: F[Clv], t: NonNegativeR) =>
laws.edgeLikelihoodConsistency(model, ppv, clv, t)
},
"node likelihood consistency" -> forAll {
(
model: F[Model],
ppv: F[Ppv],
leftClv: F[Clv],
rightClv: F[Clv],
heights: NodeHeights[R]
) =>
import heights.*
laws.nodeLikelihoodConsistency(
model,
ppv,
parentHeight,
leftClv,
leftHeight,
rightClv,
rightHeight,
t)
}
)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy