cheshire.Tree.scala Maven / Gradle / Ivy
/*
* Copyright 2021 Arman Bilge
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cheshire
import cats.Align
import cats.Applicative
import cats.Apply
import cats.Bimonad
import cats.Bitraverse
import cats.CommutativeApply
import cats.Eq
import cats.Eval
import cats.FlatMap
import cats.Functor
import cats.Monad
import cats.Monoid
import cats.NonEmptyParallel
import cats.NonEmptyTraverse
import cats.Show
import cats.data.Ior
import cats.data.NonEmptyList
import cats.syntax.all.*
import cats.~>
import GenTree.*
sealed abstract class GenTree[+N, +L]:
def valueEither: Either[N, L]
def isLeaf: Boolean
def leftOption: Option[GenTree[N, L]]
def rightOption: Option[GenTree[N, L]]
final def button: Button[N, L] = Button(this, Nil)
final def startPreOrder: Button[N, L] = button
final def startPostOrder: Button[N, L] =
Monad[Option]
.iterateUntilM(button)(_.left)(_.at.isLeaf)
// Should never be called
.getOrElse(button)
final def size: Int = reducePostOrder(_ => 1)((l, r, _) => 1 + l + r)
final def leafCount: Int = (size + 1) / 2
final def nodeCount: Int = leafCount - 1
final def isLeft[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Boolean =
leftOption.exists(_ === that)
final def isLeftOf[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Boolean =
that.isLeft(this)
final def isRight[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Boolean =
rightOption.exists(_ === that)
final def isRightOf[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Boolean =
that.isRight(this)
final def sibling[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Option[GenTree[N1, L1]] =
if isRight(that) then leftOption else if isLeft(that) then rightOption else None
final def bimap[N1, L1](f: N => N1, g: L => L1): GenTree[N1, L1] =
bitraverse(n => Eval.now(f(n)), l => Eval.now(g(l))).value
final def bitraverse[F[_]: Apply, N1, L1](f: N => F[N1], g: L => F[L1]): F[GenTree[N1, L1]] =
this match
case Node(value, left, right) =>
(f(value), left.bitraverse(f, g), right.bitraverse(f, g)).mapN(Node(_, _, _))
case Leaf(value) => g(value).map(Leaf(_))
final def reducePostOrder[Z](f: L => Z)(g: (Z, Z, N) => Z): Z =
reducePostOrderM(a => Eval.now(f(a)))((l, r, a) => Eval.now(g(l, r, a))).value
final def reducePostOrderM[F[_]: Monad, Z](f: L => F[Z])(g: (Z, Z, N) => F[Z]): F[Z] =
this match
case Node(value, left, right) =>
(
left.reducePostOrderM(f)(g),
right.reducePostOrderM(f)(g)
).mapN(g(_, _, value)).flatten
case Leaf(value) => f(value)
final def scanPostOrder[Z](f: L => Z)(g: (Z, Z, N) => Z): GenTree[Z, Z] =
scanPostOrderM(a => Eval.now(f(a)))((l, r, a) => Eval.now(g(l, r, a))).value
final def scanPostOrderM[F[_]: Monad, Z](f: L => F[Z])(
g: (Z, Z, N) => F[Z]): F[GenTree[Z, Z]] =
this match
case Node(value, left, right) =>
(
left.scanPostOrderM(f)(g),
right.scanPostOrderM(f)(g)
).mapN { (l, r) => g(l.value, r.value, value).map(Node(_, l, r)) }.flatten
case Leaf(value) => f(value).map(Leaf(_))
final def preOrder[F[_]: Monad](f: Button[N, L] => F[Unit]): F[Unit] =
button.preOrder(f)
final def postOrder[F[_]: Monad](f: Button[N, L] => F[Unit]): F[Unit] =
button.postOrder(f)
final def ===[N1 >: N: Eq, L1 >: L: Eq](that: GenTree[N1, L1]): Boolean =
def recurse(x: GenTree[N1, L1], y: GenTree[N1, L1]): Eval[Boolean] = (x, y) match
case (Node(xn, xl, xr), Node(yn, yl, yr)) if xn === yn =>
recurse(xl, yl).flatMap {
if _ then recurse(xr, yr)
else Eval.False
}
case (Leaf(xl), Leaf(yl)) if xl === yl => Eval.True
case _ => Eval.False
recurse(this, that).value
final def show[N1 >: N: Show, L1 >: L: Show]: String =
reducePostOrder(l => s"Leaf(${(l: L1).show})") { (l, r, n) =>
s"Node(${(n: N1).show}, $l, $r)"
}
object GenTree extends GenTreeInstances:
type Oriented[+A] = Either[A, A]
def unapply[N, L](
tree: GenTree[N, L]): Some[(Either[N, L], Option[GenTree[N, L]], Option[GenTree[N, L]])] =
Some((tree.valueEither, tree.leftOption, tree.rightOption))
def apply[L](value: L): GenTree[Nothing, L] = Leaf(value)
def apply[N, L](value: N, left: GenTree[N, L], right: GenTree[N, L]): GenTree[N, L] =
Node(value, left, right)
final case class Node[+N, +L](value: N, left: GenTree[N, L], right: GenTree[N, L])
extends GenTree[N, L]:
override def valueEither = Left(value)
override def isLeaf = false
override def leftOption = Some(left)
override def rightOption = Some(right)
final case class Leaf[+L](value: L) extends GenTree[Nothing, L]:
override def valueEither = Right(value)
override def isLeaf = true
override def leftOption = None
override def rightOption = None
final case class Button[+N, +L](at: GenTree[N, L], ancestry: List[Node[N, L]]):
def tree: GenTree[N, L] = ancestry.lastOption.getOrElse(at)
def up: Option[Button[N, L]] = ancestry match
case at :: ancestry => Some(Button(at, ancestry))
case _ => None
def left: Option[Button[N, L]] = at match
case at @ Node(_, left, _) => Some(Button(left, at :: ancestry))
case _ => None
def right: Option[Button[N, L]] = at match
case at @ Node(_, _, right) => Some(Button(right, at :: ancestry))
case _ => None
def isLeft: Boolean = up.flatMap(_.left).exists(_ eq this)
def isRight: Boolean = up.flatMap(_.right).exists(_ eq this)
def sibling: Option[Button[N, L]] =
if isLeft then up.flatMap(_.right)
else if isRight then up.flatMap(_.left)
else None
def preOrder[F[_]](f: Button[N, L] => F[Unit])(using F: Monad[F]): F[Unit] =
f(this) >> (left.fold(F.unit)(_.preOrder(f)) *> right.fold(F.unit)(_.preOrder(f)))
def postOrder[F[_]](f: Button[N, L] => F[Unit])(using F: Monad[F]): F[Unit] =
(left.fold(F.unit)(_.postOrder(f)) *> right.fold(F.unit)(_.postOrder(f))) >> f(this)
def preOrderSuccessor: Option[Button[N, L]] =
left.orElse {
Monad[Option].iterateUntilM(this)(_.up)(_.isLeft).flatMap(_.sibling)
}
def postOrderSuccessor: Option[Button[N, L]] =
if isLeft then sibling.flatMap(Monad[Option].iterateUntilM(_)(_.left)(_.at.isLeaf))
else up
def replace[N1 >: N, L1 >: L](tree: GenTree[N1, L1]): Button[N1, L1] = Button(
tree,
NonEmptyList.fromList(ancestry).fold(List.empty[Node[N1, L1]]) {
case NonEmptyList(oldParent, ancestry) =>
val oldChild = at
val newChild = tree
val newParent =
if oldParent.left eq oldChild then oldParent.copy(left = newChild)
else oldParent.copy(right = newChild)
ancestry
.view
.scanLeft((oldParent, newParent)) {
case ((oldChild, newChild), oldParent) =>
val newParent =
if oldParent eq oldChild then oldParent.copy(left = newChild)
else oldParent.copy(right = newChild)
(oldParent, newParent)
}
.map(_._2)
.toList
}
)
type Tree[A] = GenTree[A, A]
extension [A](tree: Tree[A])
def value: A = tree match
case Node(value, _, _) => value
case Leaf(value) => value
def map[B](f: A => B): Tree[B] =
tree.bimap(f, f)
def traverse[F[_]: Apply, B](f: A => F[B]): F[Tree[B]] =
tree.bitraverse(f, f)
def mapWithParent[B](f: A => B)(g: (A, A) => B): Tree[B] =
traverseWithParent(a => Eval.now(f(a)))((p, c) => Eval.now(g(p, c))).value
def traverseWithParent[F[_]: Applicative, B](f: A => F[B])(g: (A, A) => F[B]): F[Tree[B]] =
tree match
case Node(value, left, right) =>
(
f(value),
left.traverseWithParent(g(value, _))(g),
right.traverseWithParent(g(value, _))(g)).mapN(Node(_, _, _))
case Leaf(value) => f(value).map(Leaf(_))
def mapWithOrientedParent[B](f: A => B)(g: (Oriented[A], A) => B): Tree[B] =
traverseWithOrientedParent(a => Eval.now(f(a)))((p, c) => Eval.now(g(p, c))).value
def traverseWithOrientedParent[F[_]: Apply, B](f: A => F[B])(
g: (Oriented[A], A) => F[B]): F[Tree[B]] = tree match
case Node(value, left, right) =>
(
f(value),
left.traverseWithOrientedParent(g(Left(value), _))(g),
right.traverseWithOrientedParent(g(Right(value), _))(g)).mapN(Node(_, _, _))
case Leaf(value) => f(value).map(Leaf(_))
def mapWithChildren[B](f: A => B)(g: (A, A, A) => B): Tree[B] =
traverseWithChildren(a => Eval.now(f(a)))((a, l, r) => Eval.now(g(a, l, r))).value
def traverseWithChildren[F[_]: Apply, B](f: A => F[B])(g: (A, A, A) => F[B]): F[Tree[B]] =
tree match
case Node(value, left, right) =>
(
g(value, left.value, right.value),
left.traverseWithChildren(f)(g),
right.traverseWithChildren(f)(g)).mapN(Node(_, _, _))
case Leaf(value) => f(value).map(Leaf(_))
def flatMap[B](f: A => Tree[B]): Tree[B] =
flatTraverse(a => Eval.now(f(a))).value
def flatTraverse[F[_]: Apply, B](f: A => F[Tree[B]]): F[Tree[B]] = tree match
case Node(value, left, right) =>
(f(value), left.flatTraverse(f), right.flatTraverse(f)).mapN { (fb, flb, frb) =>
def recurse(fb: Tree[B]): Eval[Tree[B]] = fb match
case Node(value, left, right) =>
(recurse(left), recurse(right)).mapN(Node(value, _, _))
case Leaf(value) => Eval.now(Node(value, flb, frb))
recurse(fb).value
}
case Leaf(value) => f(value)
def coflatMap[B](f: Tree[A] => B): Tree[B] =
coflatTraverse(fa => Eval.now(f(fa))).value
def coflatTraverse[F[_]: Apply, B](f: Tree[A] => F[B]): F[Tree[B]] = tree match
case node @ Node(_, left, right) =>
(f(node), left.coflatTraverse(f), right.coflatTraverse(f)).mapN(Node(_, _, _))
case leaf => f(leaf).map(Leaf(_))
def mapWithButton[B](f: Button[A, A] => B): Tree[B] =
traverseWithButton(c => Eval.now(f(c))).value
def traverseWithButton[F[_]: Monad, B](f: Button[A, A] => F[B]): F[Tree[B]] =
def recurse(button: Button[A, A]): F[Tree[B]] =
(button.left, button.right) match
case (Some(left), Some(right)) =>
(recurse(left), recurse(right), f(button)).mapN((l, r, b) => Node(b, l, r))
case _ => f(button).map(Leaf(_))
recurse(tree.button)
def scanPreOrder[B](f: A => B)(g: (B, A) => B): Tree[B] =
scanPreOrderM(a => Eval.now(f(a)))((b, a) => Eval.now(g(b, a))).value
def scanPreOrderM[F[_]: Monad, B](f: A => F[B])(g: (B, A) => F[B]): F[Tree[B]] =
tree match
case Node(value, left, right) =>
f(value).flatMap { b =>
(
left.scanPreOrderM(g(b, _))(g),
right.scanPreOrderM(g(b, _))(g)
).mapN(Node(b, _, _))
}
case Leaf(value) => f(value).map(Leaf(_))
def scanPreOrderOriented[B](f: A => B)(g: (Oriented[B], A) => B): Tree[B] =
scanPreOrderOrientedM(a => Eval.now(f(a)))((b, a) => Eval.now(g(b, a))).value
def scanPreOrderOrientedM[F[_]: Monad, B](f: A => F[B])(
g: (Oriented[B], A) => F[B]): F[Tree[B]] =
tree match
case Node(value, left, right) =>
f(value).flatMap { b =>
(
left.scanPreOrderOrientedM(g(Left(b), _))(g),
right.scanPreOrderOrientedM(g(Right(b), _))(g)
).mapN(Node(b, _, _))
}
case Leaf(value) => f(value).map(Leaf(_))
def zip[B](that: Tree[B]): Tree[(A, B)] =
zipWithM(that)((a, b) => Eval.now((a, b))).value
def zipWith[B, Z](that: Tree[B])(f: (A, B) => Z): Tree[Z] =
zipWithM(that)((a, b) => Eval.now(f(a, b))).value
def zipWithM[F[_]: Monad, B, Z](that: Tree[B])(f: (A, B) => F[Z]): F[Tree[Z]] =
(tree, that: Tree[B]) match
case (Node(a, thisLeft, thisRight), Node(b, thatLeft, thatRight)) =>
(
f(a, b),
thisLeft.zipWithM(thatLeft)(f),
thisRight.zipWithM(thatRight)(f)
).mapN(Node(_, _, _))
case _ => f(tree.value, that.value).map(Leaf(_))
sealed abstract private[cheshire] class GenTreeInstances:
given Bitraverse[GenTree] with
override def bimap[A, B, C, D](fab: GenTree[A, B])(f: A => C, g: B => D): GenTree[C, D] =
fab.bimap(f, g)
override def bitraverse[G[_]: Applicative, A, B, C, D](
fab: GenTree[A, B])(f: A => G[C], g: B => G[D]): G[GenTree[C, D]] =
fab.bitraverse(f, g)
override def bifoldLeft[A, B, C](fab: GenTree[A, B], c: C)(
f: (C, A) => C,
g: (C, B) => C): C =
def recurse(fab: GenTree[A, B], c: C): Eval[C] = fab match
case Node(value, left, right) =>
for
l <- recurse(left, c)
r <- recurse(right, l)
yield f(r, value)
case Leaf(value) => Eval.now(g(c, value))
recurse(fab, c).value
override def bifoldRight[A, B, C](fab: GenTree[A, B], c: Eval[C])(
f: (A, Eval[C]) => Eval[C],
g: (B, Eval[C]) => Eval[C]): Eval[C] = fab match
case Node(value, left, right) =>
val c1 = Eval.defer(f(value, c))
val r = Eval.defer(bifoldRight(right, c1)(f, g))
Eval.defer(bifoldRight(left, r)(f, g))
case Leaf(value) => Eval.defer(g(value, c))
given Bimonad[Tree] with NonEmptyTraverse[Tree] with Align[Tree] with
override def functor: Functor[Tree] = this
override def pure[A](x: A): Tree[A] = Leaf(x)
override def extract[A](x: Tree[A]): A = x.value
override def map[A, B](fa: Tree[A])(f: A => B): Tree[B] = fa.map(f)
override def flatMap[A, B](fa: Tree[A])(f: A => Tree[B]): Tree[B] =
fa.flatMap(f)
override def coflatMap[A, B](fa: Tree[A])(f: Tree[A] => B): Tree[B] =
fa.coflatMap(f)
override def tailRecM[A, B](a: A)(f: A => Tree[Either[A, B]]): Tree[B] =
val g = (a: A) => Eval.now(f(a))
def tailRecEval(a: A): Eval[Tree[B]] =
g(a).flatMap { ab =>
ab.flatTraverse {
case Left(a) => tailRecEval(a)
case Right(b) => Eval.now(pure(b))
}
}
tailRecEval(a).value
override def foldMap[A, B: Monoid](fa: Tree[A])(f: A => B): B =
fa.reducePostOrder(f)((l, r, a) => l |+| r |+| f(a))
override def foldLeft[A, B](fa: Tree[A], b: B)(f: (B, A) => B): B =
reduceLeftTo(fa)(f(b, _))(f)
override def foldRight[A, B](fa: Tree[A], lb: Eval[B])(
f: (A, Eval[B]) => Eval[B]): Eval[B] =
reduceRightToImpl(fa)(f(_, lb))(f)
override def reduceLeftTo[A, B](fa: Tree[A])(f: A => B)(g: (B, A) => B): B =
def recurse(fa: Tree[A])(f: A => B): Eval[B] = fa match
case Node(value, left, right) =>
for
l <- recurse(left)(f)
r <- recurse(right)(g(l, _))
yield g(r, value)
case Leaf(value) => Eval.now(f(value))
recurse(fa)(f).value
override def reduceRightTo[A, B](fa: Tree[A])(f: A => B)(
g: (A, Eval[B]) => Eval[B]): Eval[B] =
reduceRightToImpl(fa)(a => Eval.later(f(a)))(g)
private def reduceRightToImpl[A, B](fa: Tree[A])(f: A => Eval[B])(
g: (A, Eval[B]) => Eval[B]): Eval[B] = fa match
case Node(value, left, right) =>
val b = Eval.defer(f(value))
val r = Eval.defer(reduceRightToImpl(right)(g(_, b))(g))
Eval.defer(reduceRightToImpl(left)(g(_, r))(g))
case Leaf(value) => Eval.defer(f(value))
override def traverse[G[_]: Applicative, A, B](fa: Tree[A])(f: A => G[B]): G[Tree[B]] =
fa.traverse(f)
override def flatTraverse[G[_]: Applicative, A, B](fa: Tree[A])(f: A => G[Tree[B]])(
using FlatMap[Tree]): G[Tree[B]] =
fa.flatTraverse(f)
override def nonEmptyTraverse[G[_]: Apply, A, B](fa: Tree[A])(f: A => G[B]): G[Tree[B]] =
fa.traverse(f)
override def nonEmptyFlatTraverse[G[_]: Apply, A, B](fa: Tree[A])(f: A => G[Tree[B]])(
using FlatMap[Tree]): G[Tree[B]] =
fa.flatTraverse(f)
override def align[A, B](fa: Tree[A], fb: Tree[B]): Tree[Ior[A, B]] =
alignEval(fa, fb).value
private def alignEval[A, B](fa: Tree[A], fb: Tree[B]): Eval[Tree[Ior[A, B]]] =
(fa, fb) match
case (Node(a, la, ra), Node(b, lb, rb)) =>
(
alignEval(la, lb),
alignEval(ra, rb)
).mapN(Node(Ior.both(a, b), _, _))
case (Leaf(a), Leaf(b)) => Eval.now(Leaf(Ior.both(a, b)))
case (Node(a, la, ra), Leaf(b)) =>
(
la.traverse(a => Eval.now(Ior.left(a))),
ra.traverse(a => Eval.now(Ior.left(a)))
).mapN(Node(Ior.both(a, b), _, _))
case (Leaf(a), Node(b, lb, rb)) =>
(
lb.traverse(b => Eval.now(Ior.right(b))),
rb.traverse(b => Eval.now(Ior.right(b)))
).mapN(Node(Ior.both(a, b), _, _))
given NonEmptyParallel.Aux[Tree, ZipTree] =
new NonEmptyParallel[Tree]:
type F[X] = ZipTree[X]
override def flatMap: FlatMap[Tree] = summon[FlatMap[Tree]]
override def apply: Apply[ZipTree] = summon[Apply[ZipTree]]
override def parallel: Tree ~> ZipTree =
new (Tree ~> ZipTree):
override def apply[A](fa: Tree[A]): ZipTree[A] = ZipTree(fa)
override def sequential: ZipTree ~> Tree =
new (ZipTree ~> Tree):
override def apply[A](fa: ZipTree[A]): Tree[A] = fa.value
given [N: Show, L: Show]: Show[GenTree[N, L]] with
override def show(t: GenTree[N, L]): String = t.show
given [N: Eq, L: Eq]: Eq[GenTree[N, L]] with
override def eqv(x: GenTree[N, L], y: GenTree[N, L]): Boolean =
x === y
opaque type ZipTree[+A] = Tree[A]
object ZipTree:
def apply[A](tree: Tree[A]): ZipTree[A] = tree
extension [A](tree: ZipTree[A]) def value: Tree[A] = tree
given CommutativeApply[ZipTree] with
override def map[A, B](fa: ZipTree[A])(f: A => B): ZipTree[B] =
fa.map(f)
override def ap[A, B](ff: ZipTree[A => B])(fa: ZipTree[A]): ZipTree[B] =
ff.zipWith(fa)(_(_))
given [A: Eq]: Eq[ZipTree[A]] = GenTree.given_Eq_GenTree
© 2015 - 2025 Weber Informatics LLC | Privacy Policy