schrodinger.math.syntax.scala Maven / Gradle / Ivy
/*
* Copyright 2021 Arman Bilge
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package schrodinger.math.syntax
import algebra.ring.AdditiveMonoid
import algebra.ring.AdditiveSemigroup
import algebra.ring.MultiplicativeGroup
import algebra.ring.MultiplicativeMonoid
import algebra.ring.MultiplicativeSemigroup
import algebra.ring.Rig
import algebra.ring.Ring
inline def zero[A](using A: AdditiveMonoid[A]): A = A.zero
inline def one[A](using A: MultiplicativeMonoid[A]): A = A.one
extension [A](x: A)
inline def +(y: A)(using A: AdditiveSemigroup[A]): A = A.plus(x, y)
inline def *(y: A)(using A: MultiplicativeSemigroup[A]): A = A.times(x, y)
inline def /(y: A)(using A: MultiplicativeGroup[A]): A = A.div(x, y)
inline def reciprocal(using A: MultiplicativeGroup[A]): A = A.reciprocal(x)
extension [A](A: Rig[A])
inline def fromInt(n: Int): A = fakeRing.fromInt(n)
inline def fromBigInt(n: BigInt): A = fakeRing.fromBigInt(n)
private def fakeRing: Ring[A] = new:
def zero = A.zero
def one = A.one
def plus(x: A, y: A) = A.plus(x, y)
def times(x: A, y: A) = A.times(x, y)
def negate(x: A) = throw new UnsupportedOperationException
© 2015 - 2025 Weber Informatics LLC | Privacy Policy