All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.arosbio.data.transform.scale.VectorNormalizer Maven / Gradle / Ivy

Go to download

Conformal AI package, including all data IO, transformations, machine learning models and predictor classes. Without inclusion of chemistry-dependent code.

There is a newer version: 2.0.0
Show newest version
/*
 * Copyright (C) Aros Bio AB.
 *
 * CPSign is an Open Source Software that is dual licensed to allow you to choose a license that best suits your requirements:
 *
 * 1) GPLv3 (GNU General Public License Version 3) with Additional Terms, including an attribution clause as well as a limitation to use the software for commercial purposes.
 *
 * 2) CPSign Proprietary License that allows you to use CPSign for commercial activities, such as in a revenue-generating operation or environment, or integrate CPSign in your proprietary software without worrying about disclosing the source code of your proprietary software, which is required if you choose to use the software under GPLv3 license. See arosbio.com/cpsign/commercial-license for details.
 */
package com.arosbio.data.transform.scale;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.EnumSet;
import java.util.List;
import java.util.Map;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.arosbio.commons.CollectionUtils;
import com.arosbio.commons.config.EnumConfig;
import com.arosbio.commons.mixins.Aliased;
import com.arosbio.data.DataRecord;
import com.arosbio.data.DataUtils;
import com.arosbio.data.Dataset.SubSet;
import com.arosbio.data.FeatureVector;
import com.arosbio.data.FeatureVector.Feature;

/**
 * The Standardizer applies Gaussian standard normalization to normalize/scale data
 * to zero mean and unit variance, for each column individually. 
 *  
 * @author staffan
 *
 */
public class VectorNormalizer implements VectorScaler, Aliased {

	/**
	 * 
	 */
	private static final long serialVersionUID = 3383872273053895194L;
	private static final Logger LOGGER = LoggerFactory.getLogger(VectorNormalizer.class);
	
	public static final String NAME = "VectorNormalizer";
	public static final String[] ALIASES = new String[]{"RowNormalizer"};

	private transient TransformInfo info;
	private Norm norm = Norm.L2;
	private boolean inPlace = true;
	private boolean isFitted = false;
	
	public static enum Norm {
		L1, L2, L_INF;
	}
	
	@Override
	public boolean isTransformInPlace() {
		return inPlace;
	}

	@Override
	public VectorNormalizer transformInPlace(boolean inPlace) {
		this.inPlace = inPlace;
		return this;
	}
	
	public VectorNormalizer useNorm(Norm norm) 
			throws IllegalStateException {
		if (isFitted)
			throw new IllegalStateException("Transformer "+NAME + " already fitted, cannot change it");
		this.norm = norm;
		return this;
	}
	
	@Override
	public String getDescription() {
		return "Normalizes feature vectors to unit norm, using norm l1, l2 or l-inf/l-max."; 
	}
	
	public VectorNormalizer clone() {
		return new VectorNormalizer()
				.useNorm(norm)
				.transformInPlace(inPlace);
	}
	
	@Override
	public String getName() {
		return NAME;
	}
	
	@Override
	public String[] getAliases() {
		return ALIASES;
	}
	
	@Override
	public boolean isFitted() {
		return true;
	}

	@Override
	public VectorNormalizer fit(Collection data) throws TransformationException {
		LOGGER.debug("Fitting transformer {} - nothing to do", this);
		isFitted = true;

		return this;
	}
	

	@Override
	public SubSet fitAndTransform(SubSet data) throws TransformationException {
		fit(data);
		
		return transform(data);
	}

	@Override
	public SubSet transform(SubSet data) throws IllegalStateException {

		if (data.isEmpty())
			return inPlace ? data : new SubSet(data.getDataType());
		
		LOGGER.debug("Applying scaler transformer {}", this);
		SubSet toReturn = data;
		if (inPlace) {
			LOGGER.debug("Transforming in place");
			for (DataRecord r : data) {
				transform(r.getFeatures());
			}
		} else {
			LOGGER.debug("Generating a new SubSet from transformer - i.e. not in place");
			toReturn = new SubSet(data.size());
			for (DataRecord r : data) {
				toReturn.add(new DataRecord(r.getLabel(), transform(r.getFeatures())));
			}
		}
		
		info = new TransformInfo(0, data.size());
		
		LOGGER.debug("Finished transformer: {}", info);
		
		return toReturn;
	}

	@Override
	public FeatureVector transform(FeatureVector object) throws IllegalStateException {
		// First pass - compute the norm
		double norm = computeNorm(object);
		
		// Second pass - divide all feats
		FeatureVector toReturn = (inPlace ? object : object.clone());
		
		for (Feature f : toReturn) {
			toReturn.withFeature(f.getIndex(), f.getValue()/norm);
		}
		return toReturn;
	}
	
	private double computeNorm(FeatureVector v) {
		if (norm == Norm.L1) {
			return DataUtils.l1_norm(v);
		} else if (norm == Norm.L2) {
			return DataUtils.l2_norm(v);
		} else {
			return DataUtils.l_inf_norm(v);
		}
	}
	
	@Override
	public boolean appliesToNewObjects() {
		return true;
	}
	
	@Override
	public boolean applicableToClassificationData() {
		return true;
	}

	@Override
	public boolean applicableToRegressionData() {
		return true;
	}

	@Override
	public TransformInfo getLastInfo() {
		return info;
	}
	
	@Override
	public String toString() {
		return NAME;
	}

	
	private static final List NORM_CONF = Arrays.asList("norm", "vectorNorm");
	
	@Override
	public List getConfigParameters() {
		List confs = new ArrayList<>();
		confs.add(new EnumConfig.Builder<>(NORM_CONF,EnumSet.allOf(Norm.class),Norm.L2).build());
		return confs;
	}

	@Override
	public void setConfigParameters(Map params) 
			throws IllegalStateException, IllegalArgumentException {
		if (params == null)
			return;
		for (Map.Entry kv : params.entrySet()) {
			if (CollectionUtils.containsIgnoreCase(NORM_CONF, kv.getKey())) {
				try {
					if (kv.getValue() instanceof Norm) {
						norm = (Norm) kv.getValue();
					} else {
						norm = Norm.valueOf(kv.getValue().toString());
					}
				} catch (Exception e) {
					LOGGER.debug("Tried to set vector norm in {} but got incorrect input {}",this,kv.getValue());
					throw new IllegalArgumentException("Invalid config value for "+NORM_CONF.get(0) + " for transformer " + NAME);
				}
			}
		}
		
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy