com.arosbio.ml.metrics.cp.classification.ProportionSingleLabelPredictions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of confai Show documentation
Show all versions of confai Show documentation
Conformal AI package, including all data IO, transformations, machine learning models and predictor classes. Without inclusion of chemistry-dependent code.
/*
* Copyright (C) Aros Bio AB.
*
* CPSign is an Open Source Software that is dual licensed to allow you to choose a license that best suits your requirements:
*
* 1) GPLv3 (GNU General Public License Version 3) with Additional Terms, including an attribution clause as well as a limitation to use the software for commercial purposes.
*
* 2) CPSign Proprietary License that allows you to use CPSign for commercial activities, such as in a revenue-generating operation or environment, or integrate CPSign in your proprietary software without worrying about disclosing the source code of your proprietary software, which is required if you choose to use the software under GPLv3 license. See arosbio.com/cpsign/commercial-license for details.
*/
package com.arosbio.ml.metrics.cp.classification;
import java.util.Map;
import com.arosbio.commons.mixins.Aliased;
import com.arosbio.commons.mixins.Described;
import com.arosbio.ml.cp.PValueTools;
import com.arosbio.ml.metrics.SingleValuedMetric;
import com.arosbio.ml.metrics.cp.ConfidenceDependentMetric;
import com.google.common.collect.ImmutableMap;
public class ProportionSingleLabelPredictions implements SingleValuedMetric,
CPClassifierMetric, ConfidenceDependentMetric, Aliased, Described {
public static final String METRIC_NAME = "Proportion single-label prediction sets";
public static final String METRIC_ALIAS = "PropSingleLabel";
public final static String METRIC_DESCRIPTION = "The proportion of single-label predictions at a given confidence, the proportion should be maximized.";
private double confidenceLevel;
private int numExamples = 0, numSingleLabel=0;
public ProportionSingleLabelPredictions() {
this(ConfidenceDependentMetric.DEFAULT_CONFIDENCE);
}
public ProportionSingleLabelPredictions(double confidenceLevel) {
this.confidenceLevel = confidenceLevel;
}
@Override
public boolean supportsMulticlass() {
return true;
}
@Override
public String getName() {
return METRIC_NAME;
}
@Override
public String getDescription() {
return METRIC_DESCRIPTION;
}
@Override
public String[] getAliases() {
return new String[]{METRIC_ALIAS};
}
public String toString() {
return SingleValuedMetric.toString(this);
}
@Override
public int getNumExamples() {
return numExamples;
}
@Override
public ProportionSingleLabelPredictions clone() {
return new ProportionSingleLabelPredictions(confidenceLevel);
}
@Override
public void clear() {
numExamples=0;
numSingleLabel=0;
}
@Override
public boolean goalIsMinimization() {
return false;
}
@Override
public double getConfidence() {
return confidenceLevel;
}
@Override
public double getScore() {
return ((double)numSingleLabel)/numExamples;
}
@Override
public Map asMap() {
return ImmutableMap.of(METRIC_NAME,getScore());
}
@Override
public void setConfidence(double confidence) throws IllegalArgumentException, IllegalStateException {
if (confidence< 0 || confidence > 1)
throw new IllegalArgumentException("Confidence must be in the range [0,1]");
if (numExamples>0)
throw new IllegalStateException("Cannot change the confidence when predictions has been added");
this.confidenceLevel = confidence;
}
@Override
public void addPrediction(int trueLabel, Map pValues) {
if (PValueTools.getPredictionSetSize(pValues, confidenceLevel)==1)
numSingleLabel++;
numExamples++;
}
}