All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pulsar.common.util.collections.ConcurrentOpenHashMap Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.pulsar.common.util.collections;

import static org.apache.pulsar.shade.com.google.common.base.Preconditions.checkArgument;
import static java.util.Objects.requireNonNull;
import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import java.util.concurrent.locks.StampedLock;
import java.util.function.BiConsumer;
import java.util.function.Function;

/**
 * Concurrent hash map.
 *
 * 

Provides similar methods as a {@code ConcurrentMap} but since it's an open hash map with linear probing, * no node allocations are required to store the values. * * @param */ @SuppressWarnings("unchecked") public class ConcurrentOpenHashMap { private static final Object EmptyKey = null; private static final Object DeletedKey = new Object(); private static final ConcurrentOpenHashMap EmptyMap = new ConcurrentOpenHashMap<>(1, 1); /** * This object is used to delete empty value in this map. * EmptyValue.equals(null) = true. */ private static final Object EmptyValue = new Object() { @SuppressFBWarnings @Override public boolean equals(Object obj) { return obj == null; } /** * This is just for avoiding spotbugs errors */ @Override public int hashCode() { return super.hashCode(); } }; private static final int DefaultExpectedItems = 256; private static final int DefaultConcurrencyLevel = 16; private static final float DefaultMapFillFactor = 0.66f; private static final float DefaultMapIdleFactor = 0.15f; private static final float DefaultExpandFactor = 2; private static final float DefaultShrinkFactor = 2; private static final boolean DefaultAutoShrink = false; private final Section[] sections; public static Builder newBuilder() { return new Builder<>(); } /** * Builder of ConcurrentOpenHashMap. */ public static class Builder { int expectedItems = DefaultExpectedItems; int concurrencyLevel = DefaultConcurrencyLevel; float mapFillFactor = DefaultMapFillFactor; float mapIdleFactor = DefaultMapIdleFactor; float expandFactor = DefaultExpandFactor; float shrinkFactor = DefaultShrinkFactor; boolean autoShrink = DefaultAutoShrink; public Builder expectedItems(int expectedItems) { this.expectedItems = expectedItems; return this; } public Builder concurrencyLevel(int concurrencyLevel) { this.concurrencyLevel = concurrencyLevel; return this; } public Builder mapFillFactor(float mapFillFactor) { this.mapFillFactor = mapFillFactor; return this; } public Builder mapIdleFactor(float mapIdleFactor) { this.mapIdleFactor = mapIdleFactor; return this; } public Builder expandFactor(float expandFactor) { this.expandFactor = expandFactor; return this; } public Builder shrinkFactor(float shrinkFactor) { this.shrinkFactor = shrinkFactor; return this; } public Builder autoShrink(boolean autoShrink) { this.autoShrink = autoShrink; return this; } public ConcurrentOpenHashMap build() { return new ConcurrentOpenHashMap<>(expectedItems, concurrencyLevel, mapFillFactor, mapIdleFactor, autoShrink, expandFactor, shrinkFactor); } } @Deprecated public ConcurrentOpenHashMap() { this(DefaultExpectedItems); } @Deprecated public ConcurrentOpenHashMap(int expectedItems) { this(expectedItems, DefaultConcurrencyLevel); } @Deprecated public ConcurrentOpenHashMap(int expectedItems, int concurrencyLevel) { this(expectedItems, concurrencyLevel, DefaultMapFillFactor, DefaultMapIdleFactor, DefaultAutoShrink, DefaultExpandFactor, DefaultShrinkFactor); } public ConcurrentOpenHashMap(int expectedItems, int concurrencyLevel, float mapFillFactor, float mapIdleFactor, boolean autoShrink, float expandFactor, float shrinkFactor) { checkArgument(expectedItems > 0); checkArgument(concurrencyLevel > 0); checkArgument(expectedItems >= concurrencyLevel); checkArgument(mapFillFactor > 0 && mapFillFactor < 1); checkArgument(mapIdleFactor > 0 && mapIdleFactor < 1); checkArgument(mapFillFactor > mapIdleFactor); checkArgument(expandFactor > 1); checkArgument(shrinkFactor > 1); int numSections = concurrencyLevel; int perSectionExpectedItems = expectedItems / numSections; int perSectionCapacity = (int) (perSectionExpectedItems / mapFillFactor); this.sections = (Section[]) new Section[numSections]; for (int i = 0; i < numSections; i++) { sections[i] = new Section<>(perSectionCapacity, mapFillFactor, mapIdleFactor, autoShrink, expandFactor, shrinkFactor); } } public static ConcurrentOpenHashMap emptyMap() { return (ConcurrentOpenHashMap) EmptyMap; } long getUsedBucketCount() { long usedBucketCount = 0; for (Section s : sections) { usedBucketCount += s.usedBuckets; } return usedBucketCount; } public long size() { long size = 0; for (Section s : sections) { size += s.size; } return size; } public long capacity() { long capacity = 0; for (Section s : sections) { capacity += s.capacity; } return capacity; } public boolean isEmpty() { for (Section s : sections) { if (s.size != 0) { return false; } } return true; } public V get(K key) { requireNonNull(key); long h = hash(key); return getSection(h).get(key, (int) h); } public boolean containsKey(K key) { return get(key) != null; } public V put(K key, V value) { requireNonNull(key); requireNonNull(value); long h = hash(key); return getSection(h).put(key, value, (int) h, false, null); } public V putIfAbsent(K key, V value) { requireNonNull(key); requireNonNull(value); long h = hash(key); return getSection(h).put(key, value, (int) h, true, null); } public V computeIfAbsent(K key, Function provider) { requireNonNull(key); requireNonNull(provider); long h = hash(key); return getSection(h).put(key, null, (int) h, true, provider); } public V remove(K key) { requireNonNull(key); long h = hash(key); return getSection(h).remove(key, null, (int) h); } public boolean remove(K key, Object value) { requireNonNull(key); requireNonNull(value); long h = hash(key); return getSection(h).remove(key, value, (int) h) != null; } public void removeNullValue(K key) { remove(key, EmptyValue); } private Section getSection(long hash) { // Use 32 msb out of long to get the section final int sectionIdx = (int) (hash >>> 32) & (sections.length - 1); return sections[sectionIdx]; } public void clear() { for (int i = 0; i < sections.length; i++) { sections[i].clear(); } } public void forEach(BiConsumer processor) { for (int i = 0; i < sections.length; i++) { sections[i].forEach(processor); } } /** * @return a new list of all keys (makes a copy) */ public List keys() { List keys = new ArrayList<>((int) size()); forEach((key, value) -> keys.add(key)); return keys; } public List values() { List values = new ArrayList<>((int) size()); forEach((key, value) -> values.add(value)); return values; } // A section is a portion of the hash map that is covered by a single @SuppressWarnings("serial") private static final class Section extends StampedLock { // Each item take up 2 continuous array space. private static final int ITEM_SIZE = 2; // Keys and values are stored interleaved in the table array private volatile Object[] table; private volatile int capacity; private final int initCapacity; private static final AtomicIntegerFieldUpdater

SIZE_UPDATER = AtomicIntegerFieldUpdater.newUpdater(Section.class, "size"); private volatile int size; private int usedBuckets; private int resizeThresholdUp; private int resizeThresholdBelow; private final float mapFillFactor; private final float mapIdleFactor; private final float expandFactor; private final float shrinkFactor; private final boolean autoShrink; Section(int capacity, float mapFillFactor, float mapIdleFactor, boolean autoShrink, float expandFactor, float shrinkFactor) { this.capacity = alignToPowerOfTwo(capacity); this.initCapacity = this.capacity; this.table = new Object[ITEM_SIZE * this.capacity]; this.size = 0; this.usedBuckets = 0; this.autoShrink = autoShrink; this.mapFillFactor = mapFillFactor; this.mapIdleFactor = mapIdleFactor; this.expandFactor = expandFactor; this.shrinkFactor = shrinkFactor; this.resizeThresholdUp = (int) (this.capacity * mapFillFactor); this.resizeThresholdBelow = (int) (this.capacity * mapIdleFactor); } V get(K key, int keyHash) { long stamp = tryOptimisticRead(); boolean acquiredLock = false; // add local variable here, so OutOfBound won't happen Object[] table = this.table; // calculate table.length / 2 as capacity to avoid rehash changing capacity int bucket = signSafeMod(keyHash, table.length / ITEM_SIZE); try { while (true) { // First try optimistic locking K storedKey = (K) table[bucket]; V storedValue = (V) table[bucket + 1]; if (!acquiredLock && validate(stamp)) { // The values we have read are consistent if (key.equals(storedKey)) { return storedValue; } else if (storedKey == EmptyKey) { // Not found return null; } } else { // Fallback to acquiring read lock if (!acquiredLock) { stamp = readLock(); acquiredLock = true; // update local variable table = this.table; bucket = signSafeMod(keyHash, table.length / ITEM_SIZE); storedKey = (K) table[bucket]; storedValue = (V) table[bucket + 1]; } if (key.equals(storedKey)) { return storedValue; } else if (storedKey == EmptyKey) { // Not found return null; } } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { if (acquiredLock) { unlockRead(stamp); } } } V put(K key, V value, int keyHash, boolean onlyIfAbsent, Function valueProvider) { long stamp = writeLock(); int bucket = signSafeMod(keyHash, capacity); // Remember where we find the first available spot int firstDeletedKey = -1; try { while (true) { K storedKey = (K) table[bucket]; V storedValue = (V) table[bucket + 1]; if (key.equals(storedKey)) { if (!onlyIfAbsent) { // Over written an old value for same key table[bucket + 1] = value; return storedValue; } else { return storedValue; } } else if (storedKey == EmptyKey) { // Found an empty bucket. This means the key is not in the map. If we've already seen a deleted // key, we should write at that position if (firstDeletedKey != -1) { bucket = firstDeletedKey; } else { ++usedBuckets; } if (value == null) { value = valueProvider.apply(key); } table[bucket] = key; table[bucket + 1] = value; SIZE_UPDATER.incrementAndGet(this); return valueProvider != null ? value : null; } else if (storedKey == DeletedKey) { // The bucket contained a different deleted key if (firstDeletedKey == -1) { firstDeletedKey = bucket; } } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { if (usedBuckets > resizeThresholdUp) { try { // Expand the hashmap int newCapacity = alignToPowerOfTwo((int) (capacity * expandFactor)); rehash(newCapacity); } finally { unlockWrite(stamp); } } else { unlockWrite(stamp); } } } private V remove(K key, Object value, int keyHash) { long stamp = writeLock(); int bucket = signSafeMod(keyHash, capacity); try { while (true) { K storedKey = (K) table[bucket]; V storedValue = (V) table[bucket + 1]; if (key.equals(storedKey)) { if (value == null || value.equals(storedValue)) { SIZE_UPDATER.decrementAndGet(this); int nextInArray = (bucket + ITEM_SIZE) & (table.length - 1); if (table[nextInArray] == EmptyKey) { table[bucket] = EmptyKey; table[bucket + 1] = null; --usedBuckets; // Cleanup all the buckets that were in `DeletedKey` state, // so that we can reduce unnecessary expansions int lastBucket = (bucket - ITEM_SIZE) & (table.length - 1); while (table[lastBucket] == DeletedKey) { table[lastBucket] = EmptyKey; table[lastBucket + 1] = null; --usedBuckets; lastBucket = (lastBucket - ITEM_SIZE) & (table.length - 1); } } else { table[bucket] = DeletedKey; table[bucket + 1] = null; } return storedValue; } else { return null; } } else if (storedKey == EmptyKey) { // Key wasn't found return null; } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } finally { if (autoShrink && size < resizeThresholdBelow) { try { // Shrinking must at least ensure initCapacity, // so as to avoid frequent shrinking and expansion near initCapacity, // frequent shrinking and expansion, // additionally opened arrays will consume more memory and affect GC int newCapacity = Math.max(alignToPowerOfTwo((int) (capacity / shrinkFactor)), initCapacity); int newResizeThresholdUp = (int) (newCapacity * mapFillFactor); if (newCapacity < capacity && newResizeThresholdUp > size) { // shrink the hashmap rehash(newCapacity); } } finally { unlockWrite(stamp); } } else { unlockWrite(stamp); } } } void clear() { long stamp = writeLock(); try { if (autoShrink && capacity > initCapacity) { shrinkToInitCapacity(); } else { Arrays.fill(table, EmptyKey); this.size = 0; this.usedBuckets = 0; } } finally { unlockWrite(stamp); } } public void forEach(BiConsumer processor) { // Take a reference to the data table, if there is a rehashing event, we'll be // simply iterating over a snapshot of the data. Object[] table = this.table; // Go through all the buckets for this section. We try to renew the stamp only after a validation // error, otherwise we keep going with the same. long stamp = 0; for (int bucket = 0; bucket < table.length; bucket += ITEM_SIZE) { if (stamp == 0) { stamp = tryOptimisticRead(); } K storedKey = (K) table[bucket]; V storedValue = (V) table[bucket + 1]; if (!validate(stamp)) { // Fallback to acquiring read lock stamp = readLock(); try { storedKey = (K) table[bucket]; storedValue = (V) table[bucket + 1]; } finally { unlockRead(stamp); } stamp = 0; } if (storedKey != DeletedKey && storedKey != EmptyKey) { processor.accept(storedKey, storedValue); } } } private void rehash(int newCapacity) { // Expand the hashmap Object[] newTable = new Object[ITEM_SIZE * newCapacity]; // Re-hash table for (int i = 0; i < table.length; i += ITEM_SIZE) { K storedKey = (K) table[i]; V storedValue = (V) table[i + 1]; if (storedKey != EmptyKey && storedKey != DeletedKey) { insertKeyValueNoLock(newTable, newCapacity, storedKey, storedValue); } } table = newTable; capacity = newCapacity; usedBuckets = size; resizeThresholdUp = (int) (capacity * mapFillFactor); resizeThresholdBelow = (int) (capacity * mapIdleFactor); } private void shrinkToInitCapacity() { Object[] newTable = new Object[ITEM_SIZE * initCapacity]; table = newTable; size = 0; usedBuckets = 0; // Capacity needs to be updated after the values, so that we won't see // a capacity value bigger than the actual array size capacity = initCapacity; resizeThresholdUp = (int) (capacity * mapFillFactor); resizeThresholdBelow = (int) (capacity * mapIdleFactor); } private static void insertKeyValueNoLock(Object[] table, int capacity, K key, V value) { int bucket = signSafeMod(hash(key), capacity); while (true) { K storedKey = (K) table[bucket]; if (storedKey == EmptyKey) { // The bucket is empty, so we can use it table[bucket] = key; table[bucket + 1] = value; return; } bucket = (bucket + ITEM_SIZE) & (table.length - 1); } } } private static final long HashMixer = 0xc6a4a7935bd1e995L; private static final int R = 47; static final long hash(K key) { long hash = key.hashCode() * HashMixer; hash ^= hash >>> R; hash *= HashMixer; return hash; } static final int signSafeMod(long n, int max) { // as the ITEM_SIZE of Section is 2, so the index is the multiple of 2 // that is to left shift 1 bit return (int) (n & (max - 1)) << 1; } private static int alignToPowerOfTwo(int n) { return (int) Math.pow(2, 32 - Integer.numberOfLeadingZeros(n - 1)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy