com.audienceproject.spark.dynamodb.connector.ColumnSchema.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark-dynamodb_2.11 Show documentation
Show all versions of spark-dynamodb_2.11 Show documentation
Plug-and-play implementation of an Apache Spark custom data source for AWS DynamoDB.
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
* Copyright © 2019 AudienceProject. All rights reserved.
*/
package com.audienceproject.spark.dynamodb.connector
import org.apache.spark.sql.types.{DataType, StructType}
private[dynamodb] class ColumnSchema(keySchema: KeySchema,
sparkSchema: StructType) {
type Attr = (String, Int, DataType)
private val columnNames = sparkSchema.map(_.name)
private val keyIndices = keySchema match {
case KeySchema(hashKey, None) =>
val hashKeyIndex = columnNames.indexOf(hashKey)
val hashKeyType = sparkSchema(hashKey).dataType
Left(hashKey, hashKeyIndex, hashKeyType)
case KeySchema(hashKey, Some(rangeKey)) =>
val hashKeyIndex = columnNames.indexOf(hashKey)
val rangeKeyIndex = columnNames.indexOf(rangeKey)
val hashKeyType = sparkSchema(hashKey).dataType
val rangeKeyType = sparkSchema(rangeKey).dataType
Right((hashKey, hashKeyIndex, hashKeyType), (rangeKey, rangeKeyIndex, rangeKeyType))
}
private val attributeIndices = columnNames.zipWithIndex.filterNot({
case (name, _) => keySchema match {
case KeySchema(hashKey, None) => name == hashKey
case KeySchema(hashKey, Some(rangeKey)) => name == hashKey || name == rangeKey
}
}).map({
case (name, index) => (name, index, sparkSchema(name).dataType)
})
def keys(): Either[Attr, (Attr, Attr)] = keyIndices
def attributes(): Seq[Attr] = attributeIndices
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy