All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.osgeo.proj4j.proj.EqualAreaAzimuthalProjection Maven / Gradle / Ivy

Go to download

GeoTrellis is an open source geographic data processing engine for high performance applications.

There is a newer version: 0.10.3
Show newest version
/*
Copyright 2006 Jerry Huxtable

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

/*
 * This file was semi-automatically converted from the public-domain USGS PROJ source.
 */
package org.osgeo.proj4j.proj;

import org.osgeo.proj4j.ProjCoordinate;
import org.osgeo.proj4j.ProjectionException;
import org.osgeo.proj4j.util.ProjectionMath;

public class EqualAreaAzimuthalProjection extends AzimuthalProjection {

	private double sinb1;
	private double cosb1;
	private double xmf;
	private double ymf;
	private double mmf;
	private double qp;
	private double dd;
	private double rq;
	private double[] apa;

	public EqualAreaAzimuthalProjection() {
		initialize();
	}

	public Object clone() {
		EqualAreaAzimuthalProjection p = (EqualAreaAzimuthalProjection)super.clone();
		if (apa != null)
			p.apa = (double[])apa.clone();
		return p;
	}
	
	public void initialize() {
		super.initialize();
		if (spherical) {
			if (mode == OBLIQUE) {
				sinphi0 = Math.sin(projectionLatitude);
				cosphi0 = Math.cos(projectionLatitude);
			}
		} else {
			double sinphi;

			qp = ProjectionMath.qsfn(1., e, one_es);
			mmf = .5 / (1. - es);
			apa = ProjectionMath.authset(es);
			switch (mode) {
			case NORTH_POLE:
			case SOUTH_POLE:
				dd = 1.;
				break;
			case EQUATOR:
				dd = 1. / (rq = Math.sqrt(.5 * qp));
				xmf = 1.;
				ymf = .5 * qp;
				break;
			case OBLIQUE:
				rq = Math.sqrt(.5 * qp);
				sinphi = Math.sin(projectionLatitude);
				sinb1 = ProjectionMath.qsfn(sinphi, e, one_es) / qp;
				cosb1 = Math.sqrt(1. - sinb1 * sinb1);
				dd = Math.cos(projectionLatitude) / (Math.sqrt(1. - es * sinphi * sinphi) *
				   rq * cosb1);
				ymf = (xmf = rq) / dd;
				xmf *= dd;
				break;
			}
		}
	}

	public ProjCoordinate project(double lam, double phi, ProjCoordinate xy) {
		if (spherical) {
			double  coslam, cosphi, sinphi;

			sinphi = Math.sin(phi);
			cosphi = Math.cos(phi);
			coslam = Math.cos(lam);
			switch (mode) {
			case EQUATOR:
				xy.y = 1. + cosphi * coslam;
				if (xy.y <= EPS10) throw new ProjectionException();
				xy.x = (xy.y = Math.sqrt(2. / xy.y)) * cosphi * Math.sin(lam);
				xy.y *= mode == EQUATOR ? sinphi :
				   cosphi0 * sinphi - sinphi0 * cosphi * coslam;
				break;
			case OBLIQUE:
				xy.y = 1. + sinphi0 * sinphi + cosphi0 * cosphi * coslam;
				if (xy.y <= EPS10) throw new ProjectionException();
				xy.x = (xy.y = Math.sqrt(2. / xy.y)) * cosphi * Math.sin(lam);
				xy.y *= mode == EQUATOR ? sinphi :
				   cosphi0 * sinphi - sinphi0 * cosphi * coslam;
				break;
			case NORTH_POLE:
				coslam = -coslam;
			case SOUTH_POLE:
				if (Math.abs(phi + projectionLatitude) < EPS10) throw new ProjectionException();
				xy.y = ProjectionMath.QUARTERPI - phi * .5;
				xy.y = 2. * (mode == SOUTH_POLE ? Math.cos(xy.y) : Math.sin(xy.y));
				xy.x = xy.y * Math.sin(lam);
				xy.y *= coslam;
				break;
			}
		} else {
			double coslam, sinlam, sinphi, q, sinb = 0, cosb = 0, b = 0;

			coslam = Math.cos(lam);
			sinlam = Math.sin(lam);
			sinphi = Math.sin(phi);
			q = ProjectionMath.qsfn(sinphi, e, one_es);
			if (mode == OBLIQUE || mode == EQUATOR) {
				sinb = q / qp;
				cosb = Math.sqrt(1. - sinb * sinb);
			}
			switch (mode) {
			case OBLIQUE:
				b = 1. + sinb1 * sinb + cosb1 * cosb * coslam;
				break;
			case EQUATOR:
				b = 1. + cosb * coslam;
				break;
			case NORTH_POLE:
				b = ProjectionMath.HALFPI + phi;
				q = qp - q;
				break;
			case SOUTH_POLE:
				b = phi - ProjectionMath.HALFPI;
				q = qp + q;
				break;
			}
			if (Math.abs(b) < EPS10) throw new ProjectionException();
			switch (mode) {
			case OBLIQUE:
				xy.y = ymf * ( b = Math.sqrt(2. / b) )
				   * (cosb1 * sinb - sinb1 * cosb * coslam);
				xy.x = xmf * b * cosb * sinlam;
				break;
			case EQUATOR:
				xy.y = (b = Math.sqrt(2. / (1. + cosb * coslam))) * sinb * ymf; 
				xy.x = xmf * b * cosb * sinlam;
				break;
			case NORTH_POLE:
			case SOUTH_POLE:
				if (q >= 0.) {
					xy.x = (b = Math.sqrt(q)) * sinlam;
					xy.y = coslam * (mode == SOUTH_POLE ? b : -b);
				} else
					xy.x = xy.y = 0.;
				break;
			}
		}
		return xy;
	}

	public ProjCoordinate projectInverse(double x, double y, ProjCoordinate lp) {
		if (spherical) {
			double  cosz = 0, rh, sinz = 0;

			rh = ProjectionMath.distance(x, y);
			if ((lp.y = rh * .5 ) > 1.) throw new ProjectionException();
			lp.y = 2. * Math.asin(lp.y);
			if (mode == OBLIQUE || mode == EQUATOR) {
				sinz = Math.sin(lp.y);
				cosz = Math.cos(lp.y);
			}
			switch (mode) {
			case EQUATOR:
				lp.y = Math.abs(rh) <= EPS10 ? 0. : Math.asin(y * sinz / rh);
				x *= sinz;
				y = cosz * rh;
				break;
			case OBLIQUE:
				lp.y = Math.abs(rh) <= EPS10 ? projectionLatitude :
				   Math.asin(cosz * sinphi0 + y * sinz * cosphi0 / rh);
				x *= sinz * cosphi0;
				y = (cosz - Math.sin(lp.y) * sinphi0) * rh;
				break;
			case NORTH_POLE:
				y = -y;
				lp.y = ProjectionMath.HALFPI - lp.y;
				break;
			case SOUTH_POLE:
				lp.y -= ProjectionMath.HALFPI;
				break;
			}
			lp.x = (y == 0. && (mode == EQUATOR || mode == OBLIQUE)) ?
				0. : Math.atan2(x, y);
		} else {
			double cCe, sCe, q, rho, ab = 0;

			switch (mode) {
			case EQUATOR:
			case OBLIQUE:
				if ((rho = ProjectionMath.distance(x /= dd, y *=  dd)) < EPS10) {
					lp.x = 0.;
					lp.y = projectionLatitude;
					return (lp);
				}
				cCe = Math.cos(sCe = 2. * Math.asin(.5 * rho / rq));
				x *= (sCe = Math.sin(sCe));
				if (mode == OBLIQUE) {
					q = qp * (ab = cCe * sinb1 + y * sCe * cosb1 / rho);
					y = rho * cosb1 * cCe - y * sinb1 * sCe;
				} else {
					q = qp * (ab = y * sCe / rho);
					y = rho * cCe;
				}
				break;
			case NORTH_POLE:
				y = -y;
			case SOUTH_POLE:
				if ((q = (x * x + y * y)) == 0) {
					lp.x = 0.;
					lp.y = projectionLatitude;
					return lp;
				}
				ab = 1. - q / qp;
				if (mode == SOUTH_POLE)
					ab = - ab;
				break;
			}
			lp.x = Math.atan2(x, y);
			lp.y = ProjectionMath.authlat(Math.asin(ab), apa);
		}
		return lp;
	}

	/**
	 * Returns true if this projection is equal area
	 */
	public boolean isEqualArea() {
		return true;
	}

	public boolean hasInverse() {
		return true;
	}

	public String toString() {
		return "Lambert Equal Area Azimuthal";
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy