geotrellis.raster.VectorToRaster.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-raster_2.11 Show documentation
Show all versions of geotrellis-raster_2.11 Show documentation
GeoTrellis is an open source geographic data processing engine for high performance applications.
The newest version!
/*
* Copyright (c) 2014 Azavea.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package geotrellis.raster
import geotrellis.vector._
import geotrellis.raster.rasterize._
import geotrellis.raster.mapalgebra.focal.{Circle, Kernel, Square}
import spire.syntax.cfor._
/**
* Object that holds various functions for vector-to-raster
* computations.
*/
object VectorToRaster {
/**
* Computes a Density raster based on the Kernel and set of points provided.
*
* @param points Sequence of point features who's values will be used to
* compute the density.
* @param kernel [[Kernel]] to be used in the computation.
* @param rasterExtent Raster extent of the resulting raster.
* @note KernelDensity does not currently support Double raster data.
* If you use a Raster with a Double CellType (FloatConstantNoDataCellType, DoubleConstantNoDataCellType)
* the data values will be rounded to integers.
*/
def kernelDensity[D](points: Seq[PointFeature[D]],
kernel: Kernel,
rasterExtent: RasterExtent)
(implicit transform:D => Int): Tile =
kernelDensity(points, transform, kernel, rasterExtent)
/**
* Computes a Density raster based on the Kernel and set of points provided.
*
* @param points Sequence of point features who's values will be used to
* compute the density.
* @param transform Function that transforms the point feature's data into
* an Int value.
* @param kernel [[Kernel]] to be used in the computation.
* @param rasterExtent Raster extent of the resulting raster.
* @note KernelDensity does not currently support Double raster data.
* If you use a Raster with a Double CellType (FloatConstantNoDataCellType, DoubleConstantNoDataCellType)
* the data values will be rounded to integers.
*/
def kernelDensity[D](points: Seq[PointFeature[D]],
transform: D => Int,
kernel: Kernel,
rasterExtent: RasterExtent): Tile = {
val stamper = KernelStamper(IntConstantNoDataCellType, rasterExtent.cols, rasterExtent.rows, kernel)
for(point <- points) {
val col = rasterExtent.mapXToGrid(point.geom.x)
val row = rasterExtent.mapYToGrid(point.geom.y)
stamper.stampKernel(col, row, transform(point.data))
}
stamper.result
}
/**
* Gives a raster that represents the number of occurring points per
* cell.
*
* @param points Sequence of points to be counted.
* @param rasterExtent RasterExtent of the resulting raster.
*/
def countPoints(points: Seq[Point], rasterExtent: RasterExtent): Tile = {
val (cols, rows) = (rasterExtent.cols, rasterExtent.rows)
val array = Array.ofDim[Int](cols * rows).fill(0)
for(point <- points) {
val x = point.x
val y = point.y
if(rasterExtent.extent.intersects(x,y)) {
val index = rasterExtent.mapXToGrid(x) * cols + rasterExtent.mapYToGrid(y)
array(index) = array(index) + 1
}
}
IntArrayTile(array, cols, rows)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy