
sbt-scalaxb.opengis.gml.geometryPrimitives.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-server-opengis_2.12 Show documentation
Show all versions of geotrellis-server-opengis_2.12 Show documentation
GeoTrellis Server is a set of components designed to simplify viewing, processing, and serving raster data from arbitrary sources with an emphasis on doing so in a functional style.
The newest version!
// Generated by scalaxb.
package opengis.gml
/**
GML is an OGC Standard.
Copyright (c) 2001,2005,2010 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/ .
*/
/** Curve is a 1-dimensional primitive. Curves are continuous, connected, and have a measurable length in terms of the coordinate system.
A curve is composed of one or more curve segments. Each curve segment within a curve may be defined using a different interpolation method. The curve segments are connected to one another, with the end point of each segment except the last being the start point of the next segment in the segment list.
The orientation of the curve is positive.
*/
case class CurveType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
segments: opengis.gml.CurveSegmentArrayPropertyType,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveType {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
/** OrientableCurve consists of a curve and an orientation. If the orientation is "+", then the OrientableCurve is identical to the baseCurve. If the orientation is "-", then the OrientableCurve is related to another _Curve with a parameterization that reverses the sense of the curve traversal.
*/
case class OrientableCurveType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
baseCurve: opengis.gml.CurvePropertyType,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveType {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
lazy val orientation = attributes("@orientation").as[SignType]
}
/** Curve segment defines a homogeneous segment of a curve.
*/
trait AbstractCurveSegmentType {
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
}
/** A container for an array of curve segments.
*/
case class CurveSegmentArrayPropertyType(_CurveSegment: Seq[scalaxb.DataRecord[Any]] = Nil)
/** A LineStringSegment is a curve segment that is defined by two or more coordinate tuples, with linear interpolation between them.
Note: LineStringSegment implements GM_LineString of ISO 19107.
*/
case class LineStringSegmentType(linestringsegmenttypeoption: Seq[scalaxb.DataRecord[opengis.gml.LineStringSegmentTypeOption]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveSegmentType {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
}
trait LineStringSegmentTypeOption2 extends LineStringSegmentTypeOption
trait LineStringSegmentTypeOption
/** An ArcString is a curve segment that uses three-point circular arc interpolation.
*/
trait ArcStringTypable extends AbstractCurveSegmentType {
def arcstringtypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringTypableOption]]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
def numArc: Option[BigInt]
}
/** An ArcString is a curve segment that uses three-point circular arc interpolation.
*/
case class ArcStringType(arcstringtypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringTypableOption]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcStringTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes.get("@numArc") map { _.as[BigInt]}
}
trait ArcStringTypableOption2 extends ArcStringTypableOption
trait ArcStringTypableOption
/** An Arc is an arc string with only one arc unit, i.e. three control points.
*/
trait ArcTypable extends ArcStringTypable {
def arcstringtypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringTypableOption]]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
def numArc: Option[BigInt]
}
/** An Arc is an arc string with only one arc unit, i.e. three control points.
*/
case class ArcType(arcstringtypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringTypableOption]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes.get("@numArc") map { _.as[BigInt]}
}
trait ArcTypableOption2 extends ArcTypableOption
trait ArcTypableOption
/** A Circle is an arc whose ends coincide to form a simple closed loop. The "start" and "end" bearing are equal and shall be the bearing for the first controlPoint listed. The three control points must be distinct non-co-linear points for the Circle to be unambiguously defined. The arc is simply extended past the third control point until the first control point is encountered.
*/
case class CircleType(arcstringtypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringTypableOption]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes.get("@numArc") map { _.as[BigInt]}
}
/** This variant of the arc computes the mid points of the arcs instead of storing the coordinates directly. The control point sequence consists of the start and end points of each arc plus the bulge.
*/
trait ArcStringByBulgeTypable extends AbstractCurveSegmentType {
def arcstringbybulgetypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringByBulgeTypableOption]]
def bulge: Seq[Double]
def normal: Seq[opengis.gml.VectorType]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
def numArc: Option[BigInt]
}
/** This variant of the arc computes the mid points of the arcs instead of storing the coordinates directly. The control point sequence consists of the start and end points of each arc plus the bulge.
*/
case class ArcStringByBulgeType(arcstringbybulgetypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringByBulgeTypableOption]] = Nil,
bulge: Seq[Double] = Nil,
normal: Seq[opengis.gml.VectorType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcStringByBulgeTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes.get("@numArc") map { _.as[BigInt]}
}
trait ArcStringByBulgeTypableOption2 extends ArcStringByBulgeTypableOption
trait ArcStringByBulgeTypableOption
/** An ArcByBulge is an arc string with only one arc unit, i.e. two control points and one bulge.
*/
case class ArcByBulgeType(arcstringbybulgetypableoption: Seq[scalaxb.DataRecord[opengis.gml.ArcStringByBulgeTypableOption]] = Nil,
bulge: Seq[Double] = Nil,
normal: Seq[opengis.gml.VectorType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcStringByBulgeTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes.get("@numArc") map { _.as[BigInt]}
}
trait ArcByBulgeTypeOption2 extends ArcByBulgeTypeOption
trait ArcByBulgeTypeOption
/** This variant of the arc requires that the points on the arc have to be computed instead of storing the coordinates directly. The control point is the center point of the arc plus the radius and the bearing at start and end. This represenation can be used only in 2D.
*/
trait ArcByCenterPointTypable extends AbstractCurveSegmentType {
def arcbycenterpointtypableoption: scalaxb.DataRecord[opengis.gml.ArcByCenterPointTypableOption]
def radius: opengis.gml.LengthType
def startAngle: Option[opengis.gml.AngleType]
def endAngle: Option[opengis.gml.AngleType]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
def numArc: BigInt
}
/** This variant of the arc requires that the points on the arc have to be computed instead of storing the coordinates directly. The control point is the center point of the arc plus the radius and the bearing at start and end. This represenation can be used only in 2D.
*/
case class ArcByCenterPointType(arcbycenterpointtypableoption: scalaxb.DataRecord[opengis.gml.ArcByCenterPointTypableOption],
radius: opengis.gml.LengthType,
startAngle: Option[opengis.gml.AngleType] = None,
endAngle: Option[opengis.gml.AngleType] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcByCenterPointTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes("@numArc").as[BigInt]
}
trait ArcByCenterPointTypableOption2 extends ArcByCenterPointTypableOption
trait ArcByCenterPointTypableOption
/** A CircleByCenterPoint is an ArcByCenterPoint with identical start and end angle to form a full circle. Again, this represenation can be used only in 2D.
*/
case class CircleByCenterPointType(arcbycenterpointtypableoption: scalaxb.DataRecord[opengis.gml.ArcByCenterPointTypableOption],
radius: opengis.gml.LengthType,
startAngle: Option[opengis.gml.AngleType] = None,
endAngle: Option[opengis.gml.AngleType] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends ArcByCenterPointTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val numArc = attributes("@numArc").as[BigInt]
}
/** An offset curve is a curve at a constant
distance from the basis curve. They can be useful as a cheap
and simple alternative to constructing curves that are offsets
by definition.
*/
case class OffsetCurveType(offsetBase: opengis.gml.CurvePropertyType,
distance: opengis.gml.LengthType,
refDirection: Option[opengis.gml.VectorType] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveSegmentType {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
}
/** A placement takes a standard geometric
construction and places it in geographic space. It defines a
transformation from a constructive parameter space to the
co-ordinate space of the co-ordinate reference system being used.
Parameter spaces in formulae in this International Standard are
given as (u, v) in 2D and(u, v, w) in 3D. Co-ordinate reference
systems positions are given in formulae, in this International
Standard, by either (x, y) in 2D, or (x, y, z) in 3D.
Affine placements are defined by linear transformations from
parameter space to the target co-ordiante space. 2-dimensional
Cartesian parameter space,(u,v) transforms into 3-dimensional co-
ordinate reference systems,(x,y,z) by using an affine
transformation,(u,v)->(x,y,z) which is defined :
x ux vx x0
u
y = uy vy + y0
v
x uz vz z0
Then, given this equation, the location element of the
AffinePlacement is the direct position (x0, y0, z0), which is the
target position of the origin in (u, v). The two reference
directions (ux, uy, uz) and (vx, vy, vz) are the target
directions of the unit vectors at the origin in (u, v).
*/
case class AffinePlacementType(location: opengis.gml.DirectPositionType,
refDirection: Seq[opengis.gml.VectorType] = Nil,
inDimension: BigInt,
outDimension: BigInt)
case class RefLocation(AffinePlacement: opengis.gml.AffinePlacementType)
/** A clothoid, or Cornu's spiral, is plane
curve whose curvature is a fixed function of its length.
In suitably chosen co-ordinates it is given by Fresnel's
integrals.
x(t) = 0-integral-t cos(AT*T/2)dT
y(t) = 0-integral-t sin(AT*T/2)dT
This geometry is mainly used as a transition curve between
curves of type straight line to circular arc or circular arc
to circular arc. With this curve type it is possible to
achieve a C2-continous transition between the above mentioned
curve types. One formula for the Clothoid is A*A = R*t where
A is constant, R is the varying radius of curvature along the
the curve and t is the length along and given in the Fresnel
integrals.
*/
case class ClothoidType(refLocation: opengis.gml.RefLocation,
scaleFactor: BigDecimal,
startParameter: Double,
endParameter: Double,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveSegmentType {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
}
/** A GeodesicString consists of sequence of
geodesic segments. The type essentially combines a sequence of
Geodesic into a single object.
The GeodesicString is computed from two or more positions and an
interpolation using geodesics defined from the geoid (or
ellipsoid) of the co-ordinate reference system being used.
*/
trait GeodesicStringTypable extends AbstractCurveSegmentType {
def geodesicstringtypableoption: Seq[scalaxb.DataRecord[Any]]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
}
/** A GeodesicString consists of sequence of
geodesic segments. The type essentially combines a sequence of
Geodesic into a single object.
The GeodesicString is computed from two or more positions and an
interpolation using geodesics defined from the geoid (or
ellipsoid) of the co-ordinate reference system being used.
*/
case class GeodesicStringType(geodesicstringtypableoption: Seq[scalaxb.DataRecord[Any]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends GeodesicStringTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
}
trait GeodesicStringTypableOption
/** A Geodesic consists of two distinct
positions joined by a geodesic curve. The control points of
a Geodesic shall lie on the geodesic between its start
point and end points. Between these two points, a geodesic
curve defined from ellipsoid or geoid model used by the
co-ordinate reference systems may be used to interpolate
other positions. Any other point in the controlPoint array
must fall on this geodesic.
*/
case class GeodesicType(geodesicstringtypableoption: Seq[scalaxb.DataRecord[Any]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends GeodesicStringTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
}
/** Cubic splines are similar to line strings in that they are a sequence of segments each with its own defining function. A cubic spline uses the control points and a set of derivative parameters to define a piecewise 3rd degree polynomial interpolation. Unlike line-strings, the parameterization by arc length is not necessarily still a polynomial.
The function describing the curve must be C2, that is, have a continuous 1st and 2nd derivative at all points, and pass through the controlPoints in the order given. Between the control points, the curve segment is defined by a cubic polynomial. At each control point, the polynomial changes in such a manner that the 1st and 2nd derivative vectors are the same from either side. The control parameters record must contain vectorAtStart, and vectorAtEnd which are the unit tangent vectors at controlPoint[1] and controlPoint[n] where n = controlPoint.count.
Note: only the direction of the vectors is relevant, not their length.
*/
case class CubicSplineType(cubicsplinetypeoption: Seq[scalaxb.DataRecord[opengis.gml.CubicSplineTypeOption]] = Nil,
vectorAtStart: opengis.gml.VectorType,
vectorAtEnd: opengis.gml.VectorType,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractCurveSegmentType {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val degree = attributes("@degree").as[BigInt]
}
trait CubicSplineTypeOption
trait CubicSplineTypeOption2 extends CubicSplineTypeOption
/** A knot is a breakpoint on a piecewise spline curve.
*/
case class KnotType(value: Double,
multiplicity: BigInt,
weight: Double)
/** Encapsulates a knot to use it in a geometric type.
*/
case class KnotPropertyType(Knot: opengis.gml.KnotType)
/** A B-Spline is a piecewise parametric polynomial or rational curve described in terms of control points and basis functions. Knots are breakpoints on the curve that connect its pieces. They are given as a non-decreasing sequence of real numbers. If the weights in the knots are equal then it is a polynomial spline. The degree is the algebraic degree of the basis functions.
*/
trait BSplineTypable extends AbstractCurveSegmentType {
def bsplinetypableoption: Seq[scalaxb.DataRecord[opengis.gml.BSplineTypableOption]]
def degree: BigInt
def knot: Seq[opengis.gml.KnotPropertyType]
def numDerivativesAtStart: BigInt
def numDerivativesAtEnd: BigInt
def numDerivativeInterior: BigInt
def interpolation: opengis.gml.CurveInterpolationType
def isPolynomial: Option[Boolean]
def knotType: Option[opengis.gml.KnotTypesType]
}
/** A B-Spline is a piecewise parametric polynomial or rational curve described in terms of control points and basis functions. Knots are breakpoints on the curve that connect its pieces. They are given as a non-decreasing sequence of real numbers. If the weights in the knots are equal then it is a polynomial spline. The degree is the algebraic degree of the basis functions.
*/
case class BSplineType(bsplinetypableoption: Seq[scalaxb.DataRecord[opengis.gml.BSplineTypableOption]] = Nil,
degree: BigInt,
knot: Seq[opengis.gml.KnotPropertyType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends BSplineTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val isPolynomial = attributes.get("@isPolynomial") map { _.as[Boolean]}
lazy val knotType = attributes.get("@knotType") map { _.as[KnotTypesType]}
}
trait BSplineTypableOption2 extends BSplineTypableOption
trait BSplineTypableOption
/** Bezier curves are polynomial splines that use Bezier or Bernstein polynomials for interpolation purposes. It is a special case of the B-Spline curve with two knots.
*/
case class BezierType(bsplinetypableoption: Seq[scalaxb.DataRecord[opengis.gml.BSplineTypableOption]] = Nil,
degree: BigInt,
knot: Seq[opengis.gml.KnotPropertyType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends BSplineTypable {
lazy val numDerivativesAtStart = attributes("@numDerivativesAtStart").as[BigInt]
lazy val numDerivativesAtEnd = attributes("@numDerivativesAtEnd").as[BigInt]
lazy val numDerivativeInterior = attributes("@numDerivativeInterior").as[BigInt]
lazy val interpolation = attributes("@interpolation").as[CurveInterpolationType]
lazy val isPolynomial = attributes.get("@isPolynomial") map { _.as[Boolean]}
lazy val knotType = attributes.get("@knotType") map { _.as[KnotTypesType]}
}
trait BezierTypeOption
trait BezierTypeOption2 extends BezierTypeOption
/** A Surface is a 2-dimensional primitive and is composed of one or more surface patches. The surface patches are connected to one another.
The orientation of the surface is positive ("up"). The orientation of a surface chooses an "up" direction through the choice of the upward normal, which, if the surface is not a cycle, is the side of the surface from which the exterior boundary appears counterclockwise. Reversal of the surface orientation reverses the curve orientation of each boundary component, and interchanges the conceptual "up" and "down" direction of the surface. If the surface is the boundary of a solid, the "up" direction is usually outward. For closed surfaces, which have no boundary, the up direction is that of the surface patches, which must be consistent with one another. Its included surface patches describe the interior structure of the Surface.
*/
trait SurfaceTypable extends AbstractSurfaceTypable {
def standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence
def patches: scalaxb.DataRecord[Any]
def gmlid: Option[String]
def gid: Option[String]
def srsName: Option[java.net.URI]
def srsDimension: Option[BigInt]
def axisLabels: Option[Seq[String]]
def uomLabels: Option[Seq[String]]
}
/** A Surface is a 2-dimensional primitive and is composed of one or more surface patches. The surface patches are connected to one another.
The orientation of the surface is positive ("up"). The orientation of a surface chooses an "up" direction through the choice of the upward normal, which, if the surface is not a cycle, is the side of the surface from which the exterior boundary appears counterclockwise. Reversal of the surface orientation reverses the curve orientation of each boundary component, and interchanges the conceptual "up" and "down" direction of the surface. If the surface is the boundary of a solid, the "up" direction is usually outward. For closed surfaces, which have no boundary, the up direction is that of the surface patches, which must be consistent with one another. Its included surface patches describe the interior structure of the Surface.
*/
case class SurfaceType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
patches: scalaxb.DataRecord[Any],
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends SurfaceTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
/** OrientableSurface consists of a surface and an orientation. If the orientation is "+", then the OrientableSurface is identical to the baseSurface. If the orientation is "-", then the OrientableSurface is a reference to a Surface with an up-normal that reverses the direction for this OrientableSurface, the sense of "the top of the surface".
*/
case class OrientableSurfaceType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
baseSurface: opengis.gml.SurfacePropertyType,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSurfaceTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
lazy val orientation = attributes("@orientation").as[SignType]
}
/** A surface patch defines a homogenuous portion of a surface.
*/
trait AbstractSurfacePatchType {
}
/** A container for an array of surface patches.
*/
trait SurfacePatchArrayPropertyTypable {
def surfacepatcharraypropertytypablesequence1: Seq[opengis.gml.SurfacePatchArrayPropertyTypableSequence1]
}
/** A container for an array of surface patches.
*/
case class SurfacePatchArrayPropertyType(surfacepatcharraypropertytypablesequence1: Seq[opengis.gml.SurfacePatchArrayPropertyTypableSequence1] = Nil) extends SurfacePatchArrayPropertyTypable
case class SurfacePatchArrayPropertyTypableSequence1(_SurfacePatch: scalaxb.DataRecord[Any])
/** A PolygonPatch is a surface patch that is defined by a set of boundary curves and an underlying surface to which these curves adhere. The curves are coplanar and the polygon uses planar interpolation in its interior. Implements GM_Polygon of ISO 19107.
*/
case class PolygonPatchType(exterior: Option[scalaxb.DataRecord[Any]] = None,
interior: Seq[scalaxb.DataRecord[Any]] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSurfacePatchType {
lazy val interpolation = attributes("@interpolation").as[SurfaceInterpolationType]
}
/** Represents a triangle as a surface with an outer boundary consisting of a linear ring. Note that this is a polygon (subtype) with no inner boundaries. The number of points in the linear ring must be four.
*/
case class TriangleType(exterior: scalaxb.DataRecord[Any],
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSurfacePatchType {
lazy val interpolation = attributes("@interpolation").as[SurfaceInterpolationType]
}
/** Represents a rectangle as a surface with an outer boundary consisting of a linear ring. Note that this is a polygon (subtype) with no inner boundaries. The number of points in the linear ring must be five.
*/
case class RectangleType(exterior: scalaxb.DataRecord[Any],
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSurfacePatchType {
lazy val interpolation = attributes("@interpolation").as[SurfaceInterpolationType]
}
/** A Ring is used to represent a single connected component of a surface boundary. It consists of a sequence of curves connected in a cycle (an object whose boundary is empty).
A Ring is structurally similar to a composite curve in that the endPoint of each curve in the sequence is the startPoint of the next curve in the Sequence. Since the sequence is circular, there is no exception to this rule. Each ring, like all boundaries, is a cycle and each ring is simple.
NOTE: Even though each Ring is simple, the boundary need not be simple. The easiest case of this is where one of the interior rings of a surface is tangent to its exterior ring.
*/
case class RingType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
curveMember: Seq[opengis.gml.CurvePropertyType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractRingType {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
/** Encapsulates a ring to represent properties in features or geometry collections.
*/
case class RingPropertyType(Ring: opengis.gml.RingType)
case class Row(geometricPositionListGroupOption1: Seq[scalaxb.DataRecord[Any]] = Nil)
/**
*/
trait AbstractParametricCurveSurfaceTypable extends AbstractSurfacePatchType {
}
/**
*/
case class AbstractParametricCurveSurfaceType() extends AbstractParametricCurveSurfaceTypable
/** A gridded surface is a parametric curve
surface derived from a rectangular grid in the parameter
space. The rows from this grid are control points for
horizontal surface curves; the columns are control points
for vertical surface curves. The working assumption is that
for a pair of parametric co-ordinates (s, t) that the
horizontal curves for each integer offset are calculated
and evaluated at "s". The defines a sequence of control
points:
cn(s) : s 1 .....columns
From this sequence a vertical curve is calculated for "s",
and evaluated at "t". In most cases, the order of
calculation (horizontal-vertical vs. vertical-horizontal)
does not make a difference. Where it does, the horizontal-
vertical order shall be the one used.
Logically, any pair of curve interpolation types can lead
to a subtype of GriddedSurface. The following clauses
define some most commonly encountered surfaces that can
be represented in this manner.
*/
trait AbstractGriddedSurfaceTypable extends AbstractParametricCurveSurfaceTypable {
def pointGridSequence2: opengis.gml.PointGridSequence
def rows: Option[BigInt]
def columns: Option[BigInt]
}
/** A gridded surface is a parametric curve
surface derived from a rectangular grid in the parameter
space. The rows from this grid are control points for
horizontal surface curves; the columns are control points
for vertical surface curves. The working assumption is that
for a pair of parametric co-ordinates (s, t) that the
horizontal curves for each integer offset are calculated
and evaluated at "s". The defines a sequence of control
points:
cn(s) : s 1 .....columns
From this sequence a vertical curve is calculated for "s",
and evaluated at "t". In most cases, the order of
calculation (horizontal-vertical vs. vertical-horizontal)
does not make a difference. Where it does, the horizontal-
vertical order shall be the one used.
Logically, any pair of curve interpolation types can lead
to a subtype of GriddedSurface. The following clauses
define some most commonly encountered surfaces that can
be represented in this manner.
*/
case class AbstractGriddedSurfaceType(pointGridSequence2: opengis.gml.PointGridSequence,
rows: Option[BigInt] = None,
columns: Option[BigInt] = None) extends AbstractGriddedSurfaceTypable
/** A cone is a gridded surface given as a
family of conic sections whose control points vary linearly.
NOTE! A 5-point ellipse with all defining positions identical
is a point. Thus, a truncated elliptical cone can be given as a
2x5 set of control points
((P1, P1, P1, P1, P1), (P2, P3, P4, P5, P6)). P1 is the apex
of the cone. P2, P3,P4, P5 and P6 are any five distinct points
around the base ellipse of the cone. If the horizontal curves
are circles as opposed to ellipses, the a circular cone can
be constructed using ((P1, P1, P1),(P2, P3, P4)). The apex most
not coinside with the other plane.
*/
case class ConeType(pointGridSequence2: opengis.gml.PointGridSequence,
rows: Option[BigInt] = None,
columns: Option[BigInt] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractGriddedSurfaceTypable {
lazy val horizontalCurveType = attributes("@horizontalCurveType").as[CurveInterpolationType]
lazy val verticalCurveType = attributes("@verticalCurveType").as[CurveInterpolationType]
}
/** A cylinder is a gridded surface given as a
family of circles whose positions vary along a set of parallel
lines, keeping the cross sectional horizontal curves of a
constant shape.
NOTE! Given the same working assumptions as in the previous
note, a Cylinder can be given by two circles, giving us the
control points of the form ((P1, P2, P3),(P4, P5, P6)).
*/
case class CylinderType(pointGridSequence2: opengis.gml.PointGridSequence,
rows: Option[BigInt] = None,
columns: Option[BigInt] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractGriddedSurfaceTypable {
lazy val horizontalCurveType = attributes("@horizontalCurveType").as[CurveInterpolationType]
lazy val verticalCurveType = attributes("@verticalCurveType").as[CurveInterpolationType]
}
/** A sphere is a gridded surface given as a
family of circles whose positions vary linearly along the
axis of the sphere, and whise radius varies in proportions to
the cosine function of the central angle. The horizontal
circles resemble lines of constant latitude, and the vertical
arcs resemble lines of constant longitude.
NOTE! If the control points are sorted in terms of increasing
longitude, and increasing latitude, the upNormal of a sphere
is the outward normal.
EXAMPLE If we take a gridded set of latitudes and longitudes
in degrees,(u,v) such as
(-90,-180) (-90,-90) (-90,0) (-90, 90) (-90, 180)
(-45,-180) (-45,-90) (-45,0) (-45, 90) (-45, 180)
( 0,-180) ( 0,-90) ( 0,0) ( 0, 90) ( 0, 180)
( 45,-180) ( 45,-90) ( 45,0) ( 45, -90) ( 45, 180)
( 90,-180) ( 90,-90) ( 90,0) ( 90, -90) ( 90, 180)
And map these points to 3D using the usual equations (where R
is the radius of the required sphere).
z = R sin u
x = (R cos u)(sin v)
y = (R cos u)(cos v)
We have a sphere of Radius R, centred at (0,0), as a gridded
surface. Notice that the entire first row and the entire last
row of the control points map to a single point in each 3D
Euclidean space, North and South poles respectively, and that
each horizontal curve closes back on itself forming a
geometric cycle. This gives us a metrically bounded (of finite
size), topologically unbounded (not having a boundary, a
cycle) surface.
*/
case class SphereType(pointGridSequence2: opengis.gml.PointGridSequence,
rows: Option[BigInt] = None,
columns: Option[BigInt] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractGriddedSurfaceTypable {
lazy val horizontalCurveType = attributes("@horizontalCurveType").as[CurveInterpolationType]
lazy val verticalCurveType = attributes("@verticalCurveType").as[CurveInterpolationType]
}
/** A polyhedral surface is a surface composed
of polygon surfaces connected along their common boundary
curves. This differs from the surface type only in the
restriction on the types of surface patches acceptable.
*/
case class PolyhedralSurfaceType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
patches: scalaxb.DataRecord[Any],
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends SurfaceTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
/** This type defines a container for an array of
polygon patches.
*/
case class PolygonPatchArrayPropertyType(surfacepatcharraypropertytypablesequence1: Seq[opengis.gml.SurfacePatchArrayPropertyTypableSequence1] = Nil) extends SurfacePatchArrayPropertyTypable
case class PolygonPatchArrayPropertyTypeSequence1(PolygonPatch: opengis.gml.PolygonPatchType)
/** This type defines a container for an array of
triangle patches.
*/
case class TrianglePatchArrayPropertyType(surfacepatcharraypropertytypablesequence1: Seq[opengis.gml.SurfacePatchArrayPropertyTypableSequence1] = Nil) extends SurfacePatchArrayPropertyTypable
case class TrianglePatchArrayPropertyTypeSequence1(Triangle: opengis.gml.TriangleType)
/** A triangulated surface is a polyhedral
surface that is composed only of triangles. There is no
restriction on how the triangulation is derived.
*/
trait TriangulatedSurfaceTypable extends SurfaceTypable {
def standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence
def patches: scalaxb.DataRecord[Any]
def gmlid: Option[String]
def gid: Option[String]
def srsName: Option[java.net.URI]
def srsDimension: Option[BigInt]
def axisLabels: Option[Seq[String]]
def uomLabels: Option[Seq[String]]
}
/** A triangulated surface is a polyhedral
surface that is composed only of triangles. There is no
restriction on how the triangulation is derived.
*/
case class TriangulatedSurfaceType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
patches: scalaxb.DataRecord[Any],
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends TriangulatedSurfaceTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
case class ControlPoint(controlpointoption: Seq[scalaxb.DataRecord[Any]] = Nil)
trait ControlPointOption
/** A tin is a triangulated surface that uses
the Delauny algorithm or a similar algorithm complemented with
consideration of breaklines, stoplines, and maximum length of
triangle sides. These networks satisfy the Delauny's criterion
away from the modifications: Fore each triangle in the
network, the circle passing through its vertices does not
contain, in its interior, the vertex of any other triangle.
*/
case class TinType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
patches: scalaxb.DataRecord[Any],
stopLines: Seq[opengis.gml.LineStringSegmentArrayPropertyType] = Nil,
breakLines: Seq[opengis.gml.LineStringSegmentArrayPropertyType] = Nil,
maxLength: opengis.gml.LengthType,
controlPoint: opengis.gml.ControlPoint,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends TriangulatedSurfaceTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
case class LineStringSegmentArrayPropertyType(LineStringSegment: Seq[opengis.gml.LineStringSegmentType] = Nil)
/** An abstraction of a solid to support the different levels of complexity. A solid is always contiguous.
*/
trait AbstractSolidTypable extends AbstractGeometricPrimitiveType {
def standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence
def gmlid: Option[String]
def gid: Option[String]
def srsName: Option[java.net.URI]
def srsDimension: Option[BigInt]
def axisLabels: Option[Seq[String]]
def uomLabels: Option[Seq[String]]
}
/** An abstraction of a solid to support the different levels of complexity. A solid is always contiguous.
*/
case class AbstractSolidType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSolidTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
/** A property that has a solid as its value domain can either be an appropriate geometry element encapsulated in an element of this type or an XLink reference to a remote geometry element (where remote includes geometry elements located elsewhere in the same document). Either the reference or the contained element must be given, but neither both nor none.
*/
case class SolidPropertyType(solidpropertytypesequence1: Option[opengis.gml.SolidPropertyTypeSequence1] = None,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) {
lazy val xlinktype = attributes("@{http://www.w3.org/1999/xlink}type").as[xlink.TypeType]
lazy val xlinkhref = attributes.get("@{http://www.w3.org/1999/xlink}href") map { _.as[java.net.URI]}
lazy val xlinkrole = attributes.get("@{http://www.w3.org/1999/xlink}role") map { _.as[java.net.URI]}
lazy val xlinkarcrole = attributes.get("@{http://www.w3.org/1999/xlink}arcrole") map { _.as[java.net.URI]}
lazy val xlinktitle = attributes.get("@{http://www.w3.org/1999/xlink}title") map { _.as[String]}
lazy val xlinkshow = attributes.get("@{http://www.w3.org/1999/xlink}show") map { _.as[xlink.ShowType]}
lazy val xlinkactuate = attributes.get("@{http://www.w3.org/1999/xlink}actuate") map { _.as[xlink.ActuateType]}
lazy val gmlremoteSchema = attributes.get("@{http://www.opengis.net/gml}remoteSchema") map { _.as[java.net.URI]}
}
case class SolidPropertyTypeSequence1(_Solid: scalaxb.DataRecord[Any])
/** A container for an array of solids. The elements are always contained in the array property, referencing geometry elements or arrays of geometry elements is not supported.
*/
case class SolidArrayPropertyType(solidarraypropertytypesequence1: Seq[opengis.gml.SolidArrayPropertyTypeSequence1] = Nil)
case class SolidArrayPropertyTypeSequence1(_Solid: scalaxb.DataRecord[Any])
/** A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary surfaces (shells). A shell is represented by a composite surface, where every shell is used to represent a single connected component of the boundary of a solid. It consists of a composite surface (a list of orientable surfaces) connected in a topological cycle (an object whose boundary is empty). Unlike a Ring, a Shell's elements have no natural sort order. Like Rings, Shells are simple.
*/
case class SolidType(standardObjectPropertiesSequence1: opengis.gml.StandardObjectPropertiesSequence,
exterior: Option[opengis.gml.SurfacePropertyType] = None,
interior: Seq[opengis.gml.SurfacePropertyType] = Nil,
attributes: Map[String, scalaxb.DataRecord[Any]] = Map.empty) extends AbstractSolidTypable {
lazy val gmlid = attributes.get("@{http://www.opengis.net/gml}id") map { _.as[String]}
lazy val gid = attributes.get("@gid") map { _.as[String]}
lazy val srsName = attributes.get("@srsName") map { _.as[java.net.URI]}
lazy val srsDimension = attributes.get("@srsDimension") map { _.as[BigInt]}
lazy val axisLabels = attributes.get("@axisLabels") map { _.as[Seq[String]]}
lazy val uomLabels = attributes.get("@uomLabels") map { _.as[Seq[String]]}
}
sealed trait CurveInterpolationType
object CurveInterpolationType {
def fromString(value: String, scope: scala.xml.NamespaceBinding)(implicit fmt: scalaxb.XMLFormat[opengis.gml.CurveInterpolationType]): CurveInterpolationType = fmt.reads(scala.xml.Text(value), Nil) match {
case Right(x: CurveInterpolationType) => x
case x => throw new RuntimeException(s"fromString returned unexpected value $x for input $value")
}
lazy val values: Seq[CurveInterpolationType] = Seq(LinearValue, Geodesic, CircularArc3Points, CircularArc2PointWithBulge, CircularArcCenterPointWithRadius, Elliptical, Clothoid, Conic, PolynomialSpline, CubicSpline, RationalSpline)
}
case object LinearValue extends CurveInterpolationType { override def toString = "linear" }
case object Geodesic extends CurveInterpolationType { override def toString = "geodesic" }
case object CircularArc3Points extends CurveInterpolationType { override def toString = "circularArc3Points" }
case object CircularArc2PointWithBulge extends CurveInterpolationType { override def toString = "circularArc2PointWithBulge" }
case object CircularArcCenterPointWithRadius extends CurveInterpolationType { override def toString = "circularArcCenterPointWithRadius" }
case object Elliptical extends CurveInterpolationType { override def toString = "elliptical" }
case object Clothoid extends CurveInterpolationType { override def toString = "clothoid" }
case object Conic extends CurveInterpolationType { override def toString = "conic" }
case object PolynomialSpline extends CurveInterpolationType { override def toString = "polynomialSpline" }
case object CubicSpline extends CurveInterpolationType { override def toString = "cubicSpline" }
case object RationalSpline extends CurveInterpolationType { override def toString = "rationalSpline" }
sealed trait SurfaceInterpolationType
object SurfaceInterpolationType {
def fromString(value: String, scope: scala.xml.NamespaceBinding)(implicit fmt: scalaxb.XMLFormat[opengis.gml.SurfaceInterpolationType]): SurfaceInterpolationType = fmt.reads(scala.xml.Text(value), Nil) match {
case Right(x: SurfaceInterpolationType) => x
case x => throw new RuntimeException(s"fromString returned unexpected value $x for input $value")
}
lazy val values: Seq[SurfaceInterpolationType] = Seq(NoneType, Planar, Spherical, EllipticalValue, ConicValue, Tin, ParametricCurve, PolynomialSplineValue, RationalSplineValue, TriangulatedSpline)
}
case object NoneType extends SurfaceInterpolationType { override def toString = "none" }
case object Planar extends SurfaceInterpolationType { override def toString = "planar" }
case object Spherical extends SurfaceInterpolationType { override def toString = "spherical" }
case object EllipticalValue extends SurfaceInterpolationType { override def toString = "elliptical" }
case object ConicValue extends SurfaceInterpolationType { override def toString = "conic" }
case object Tin extends SurfaceInterpolationType { override def toString = "tin" }
case object ParametricCurve extends SurfaceInterpolationType { override def toString = "parametricCurve" }
case object PolynomialSplineValue extends SurfaceInterpolationType { override def toString = "polynomialSpline" }
case object RationalSplineValue extends SurfaceInterpolationType { override def toString = "rationalSpline" }
case object TriangulatedSpline extends SurfaceInterpolationType { override def toString = "triangulatedSpline" }
sealed trait KnotTypesType
object KnotTypesType {
def fromString(value: String, scope: scala.xml.NamespaceBinding)(implicit fmt: scalaxb.XMLFormat[opengis.gml.KnotTypesType]): KnotTypesType = fmt.reads(scala.xml.Text(value), Nil) match {
case Right(x: KnotTypesType) => x
case x => throw new RuntimeException(s"fromString returned unexpected value $x for input $value")
}
lazy val values: Seq[KnotTypesType] = Seq(Uniform, QuasiUniform, PiecewiseBezier)
}
case object Uniform extends KnotTypesType { override def toString = "uniform" }
case object QuasiUniform extends KnotTypesType { override def toString = "quasiUniform" }
case object PiecewiseBezier extends KnotTypesType { override def toString = "piecewiseBezier" }
case class PointGridSequence(row: opengis.gml.Row*)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy