
geotrellis.spark.mapalgebra.local.temporal.LocalTemporalTileRDDMethods.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-spark_2.11 Show documentation
Show all versions of geotrellis-spark_2.11 Show documentation
GeoTrellis is an open source geographic data processing engine for high performance applications.
The newest version!
package geotrellis.spark.mapalgebra.local.temporal
import geotrellis.raster._
import geotrellis.raster.mapalgebra.local._
import geotrellis.spark._
import geotrellis.spark.mapalgebra._
import org.apache.spark.Partitioner
import geotrellis.util.MethodExtensions
import org.apache.spark.rdd.RDD
import org.apache.spark.SparkContext._
import org.joda.time._
import com.github.nscala_time.time.Imports._
import scala.reflect.ClassTag
abstract class LocalTemporalTileRDDMethods[K: ClassTag: SpatialComponent: TemporalComponent](val self: RDD[(K, Tile)])
extends MethodExtensions[RDD[(K, Tile)]] {
def temporalMin(
windowSize: Int,
unit: Int,
start: DateTime,
end: DateTime,
partitioner: Option[Partitioner] = None
): RDD[(K, Tile)] =
LocalTemporalStatistics.temporalMin(self, windowSize, unit, start, end, partitioner)
def temporalMax(
windowSize: Int,
unit: Int,
start: DateTime,
end: DateTime,
partitioner: Option[Partitioner] = None
): RDD[(K, Tile)] =
LocalTemporalStatistics.temporalMax(self, windowSize, unit, start, end, partitioner)
def temporalMean(
windowSize: Int,
unit: Int,
start: DateTime,
end: DateTime,
partitioner: Option[Partitioner] = None
): RDD[(K, Tile)] =
LocalTemporalStatistics.temporalMean(self, windowSize, unit, start, end, partitioner)
def temporalVariance(
windowSize: Int,
unit: Int,
start: DateTime,
end: DateTime,
partitioner: Option[Partitioner] = None
): RDD[(K, Tile)] =
LocalTemporalStatistics.temporalVariance(self, windowSize, unit, start, end, partitioner)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy