
geotrellis.vector.interpolation.GeoKriging.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-vector_2.11 Show documentation
Show all versions of geotrellis-vector_2.11 Show documentation
GeoTrellis is an open source geographic data processing engine for high performance applications.
/*
* Copyright (c) 2015 Azavea.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package geotrellis.vector.interpolation
import geotrellis.vector.PointFeature
import geotrellis.vector.Point
import org.apache.commons.math3.linear._
import spire.syntax.cfor._
object GeoKriging {
def apply(points: Array[PointFeature[Double]], attrFunc: (Double, Double) => Array[Double], bandwidth: Double, model: ModelType): Kriging = {
new GeoKriging(points, attrFunc, bandwidth, model)
}
def apply(points: Array[PointFeature[Double]], attrFunc: (Double, Double) => Array[Double], model: ModelType): Kriging = {
new GeoKriging(points, attrFunc, Double.MaxValue, model)
}
def apply(points: Array[PointFeature[Double]], attrFunc: (Double, Double) => Array[Double], bandwidth: Double): Kriging = {
new GeoKriging(points, attrFunc, bandwidth, Spherical)
}
def apply(points: Array[PointFeature[Double]], attrFunc: (Double, Double) => Array[Double]): Kriging = {
new GeoKriging(points, attrFunc, Double.MaxValue, Spherical)
}
def apply(points: Array[PointFeature[Double]], bandwidth: Double, model: ModelType): Kriging = {
new GeoKriging(points,
(x, y) => Array(x, y, x * x, x * y, y * y),
bandwidth,
model)
}
def apply(points: Array[PointFeature[Double]], model: ModelType): Kriging = {
new GeoKriging(points,
(x, y) => Array(x, y, x * x, x * y, y * y),
Double.MaxValue,
model)
}
def apply(points: Array[PointFeature[Double]], bandwidth: Double): Kriging = {
new GeoKriging(points,
(x, y) => Array(x, y, x * x, x * y, y * y),
bandwidth,
Spherical)
}
def apply(points: Array[PointFeature[Double]]): Kriging = {
new GeoKriging(points,
(x, y) => Array(x, y, x * x, x * y, y * y),
Double.MaxValue,
Spherical)
}
}
/**
* @param points Sample points for Geostatistical Kriging model training
* @param attrFunc Attribute matrix transformation for a point (which decides how the point coordinates guide the pointData's value)
* @param bandwidth The maximum inter-point pair-distances which influence the prediction
* @param model The [[ModelType]] to be used for prediction
*/
class GeoKriging(points: Array[PointFeature[Double]],
attrFunc: (Double, Double) => Array[Double],
bandwidth: Double,
model: ModelType) extends Kriging {
/**
* Universal Kriging training with the sample points
* @param numberOfPoints Number of points to be Kriged
*/
protected def createPredictorInit(numberOfPoints: Int): (Double, Double) => (Double, Double) = {
val n: Int = points.length
if (n == 0)
throw new IllegalArgumentException("No points in the training dataset")
val unitCol: RealMatrix = MatrixUtils.createColumnRealMatrix(Array.fill(n)(1))
val attrMatrix =
MatrixUtils.createRealMatrix(Array.tabulate(n)
{ i => Array(1.0) ++ attrFunc(points(i).geom.x, points(i).geom.y) })
val attrSize: Int = attrMatrix.getColumnDimension - 1
val scale: RealMatrix =
new LUDecomposition(
MatrixUtils.createRealDiagonalMatrix(
Array.tabulate(attrSize+1)
{ i => absArray(attrMatrix.getColumn(i)).max }
)
).getSolver.getInverse
val attrMatrixScaled = attrMatrix.multiply(scale)
val ptData = MatrixUtils.createColumnRealMatrix(points.map(x => x.data))
val unscaledBetaOLS =
new SingularValueDecomposition(attrMatrixScaled)
.getSolver
.solve(ptData)
val betaOLS: RealMatrix = scale.multiply(unscaledBetaOLS)
val errorOLS: RealMatrix = ptData.subtract(attrMatrix.multiply(betaOLS))
val pointsFitting: Array[PointFeature[Double]] =
Array.tabulate(n) { row: Int =>
PointFeature(points(row).geom, errorOLS.getEntry(row, 0))
}
var res: Semivariogram = NonLinearSemivariogram(pointsFitting, 0, 0, model)
var delta: Double = 1.0
var counter = 0
var betaEval = betaOLS
while (delta > 0.001) {
counter = counter + 1
val eyen = MatrixUtils.createRealIdentityMatrix(n)
val covariogramMatrixIter: RealMatrix =
unitCol.multiply(unitCol.transpose())
.scalarMultiply(res.sill)
.subtract(varianceMatrixGen(res, points))
.add(eyen.scalarMultiply(res.nugget))
val covariogramInv =
try {
new SingularValueDecomposition(new CholeskyDecomposition(covariogramMatrixIter).getL)
.getSolver.solve(eyen)
}
catch {
case _: Exception =>
new SingularValueDecomposition(new CholeskyDecomposition(covariogramMatrixIter
.add(eyen.scalarMultiply(0.0000001))).getL
).getSolver
.solve(eyen)
}
val unscaledBeta =
new SingularValueDecomposition(covariogramInv.multiply(attrMatrixScaled))
.getSolver.solve(
covariogramInv.multiply(ptData)
)
val beta = scale.multiply(unscaledBeta)
val errorIter = ptData.subtract(attrMatrix.multiply(beta))
val pointsFittingIter = Array.tabulate(n) {
row: Int =>
PointFeature(points(row).geom, errorIter.getEntry(row, 0))
}
val process: Array[Double] = beta.subtract(betaEval).getColumn(0)
betaEval = beta
delta = absArray(Array.tabulate(process.length){ i =>
math.abs(process(i))/betaEval.getEntry(i,0)
}).max
if (delta > 0.0001) {
res = NonLinearSemivariogram(pointsFittingIter, 0, 0, model)
if(counter > 100)
delta = 0.0001
}
}
val covariogramMatrix =
unitCol.multiply(unitCol.transpose())
.scalarMultiply(res.sill)
.subtract(varianceMatrixGen(res, points))
.add(
MatrixUtils.createRealIdentityMatrix(n)
.scalarMultiply(res.nugget)
)
val residual: RealMatrix = ptData.subtract(attrMatrix.multiply(betaEval))
(x: Double, y: Double) =>
val pointPredict: Point = Point(x, y)
val distSortedInfo: Array[(Int, Double)] = getPointDistancesSorted(points, attrSize+2, bandwidth, pointPredict)
val distanceID: Array[Int] = distSortedInfo.map(_._1)
val localCovarianceInv =
new SingularValueDecomposition(
covariogramMatrix.getSubMatrix(distanceID, distanceID)
).getSolver.getInverse
val sortedDist: RealMatrix = MatrixUtils.createColumnRealMatrix(distSortedInfo.map(_._2))
val localCovVector: RealMatrix =
unitCol.getSubMatrix(distanceID, Array(0))
.scalarMultiply(res.sill)
.subtract(
MatrixUtils.createRealMatrix(
Array.tabulate(distanceID.length, 1){ (i, _) =>
res(sortedDist.getEntry(i,0))
}
)
)
cfor(0)(_ < distanceID.length, _ + 1) { i: Int =>
if (sortedDist.getEntry(i, 0) == 0)
localCovVector.setEntry(i, 0, localCovVector.getEntry(i, 0) + res.nugget)
}
val curAttrVal: Array[Double] = Array(1.0) ++ attrFunc(x, y)
val kPredict: Double = (
MatrixUtils.createRowRealMatrix(curAttrVal)
.multiply(betaEval).getEntry(0,0)
+ localCovVector.transpose()
.multiply(localCovarianceInv)
.multiply(residual.getSubMatrix(distanceID,Array(0)))
.getEntry(0,0)
)
val colID: Array[Int] = (0 to attrMatrix.getColumnDimension - 1).toArray
val sampleAttrSelect: RealMatrix = attrMatrix.getSubMatrix(distanceID, colID)
val attrMatrixScaledSelect: RealMatrix = attrMatrixScaled.getSubMatrix(distanceID, colID)
val rankTemp: Int =
new SingularValueDecomposition(
attrMatrixScaledSelect.transpose()
.multiply(localCovarianceInv)
.multiply(attrMatrixScaledSelect)
).getRank
val xtVinvXTemp: RealMatrix = attrMatrixScaledSelect.transpose()
.multiply(localCovarianceInv)
.multiply(attrMatrixScaledSelect)
//X' * VInverse * X
val xtVinvX: RealMatrix =
if (rankTemp < attrSize + 1)
scale.multiply(new SingularValueDecomposition(xtVinvXTemp).getSolver.getInverse)
.multiply(scale)
else
scale.multiply(new EigenDecomposition(xtVinvXTemp).getSolver.getInverse)
.multiply(scale)
val kVarTemp =
MatrixUtils.createColumnRealMatrix(curAttrVal)
.subtract(
sampleAttrSelect.transpose()
.multiply(localCovarianceInv)
.multiply(localCovVector)
)
val kVar: Double =
math.sqrt(
res.sill
- localCovVector.transpose()
.multiply(localCovarianceInv)
.multiply(localCovVector).getEntry(0,0)
+ kVarTemp.transpose()
.multiply(xtVinvX)
.multiply(kVarTemp).getEntry(0,0)
)
(kPredict, kVar)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy