
geotrellis.vector.interpolation.Semivariogram.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-vector_2.11 Show documentation
Show all versions of geotrellis-vector_2.11 Show documentation
GeoTrellis is an open source geographic data processing engine for high performance applications.
/*
* Copyright (c) 2015 Azavea.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package geotrellis.vector.interpolation
abstract sealed class ModelType
case class Linear (radius: Option[Double], lag: Double) extends ModelType
object Linear {
def apply(): Linear =
Linear(None, 0.0)
def withLag(lag: Double): Linear =
Linear(None, lag)
def withRadius(radius: Double): Linear =
Linear(Option(radius), 0.0)
def apply(radius: Double, lag: Double): Linear =
Linear(Some(radius), lag)
}
abstract class NonLinearModelType(maxDist: Double, binMax: Int)
// Non-linear
case object Gaussian extends ModelType
case object Circular extends ModelType
case object Spherical extends ModelType
case object Exponential extends ModelType
case object Wave extends ModelType
abstract class Semivariogram(val range: Double,
val sill: Double,
val nugget: Double) {
def apply(x: Double): Double
}
object Semivariogram {
def apply(f: Double => Double, range: Double, sill: Double, nugget: Double): Semivariogram =
new Semivariogram(range, sill, nugget) {
def apply(x: Double): Double = f(x)
}
/**
* @param empiricalSemivariogram is the input which has to be fitted into a Semivariogram model
* @param model the [[ModelType]] into which the input has to be fitted
* @return [[Semivariogram]]
*/
def fit(empiricalSemivariogram: EmpiricalVariogram, model: ModelType): Semivariogram = {
fit(empiricalSemivariogram, model, Array.fill[Double](3)(1))
}
/**
* @param empiricalSemivariogram is the input which has to be fitted into a Semivariogram model
* @param model the [[ModelType]] into which the input has to be fitted
* @param begin the starting point of the optimization search of (range, sill, nugget) values
* @return [[Semivariogram]]
*/
def fit(empiricalSemivariogram: EmpiricalVariogram, model: ModelType, begin: Array[Double]): Semivariogram = {
model match {
// Least Squares minimization
case Gaussian =>
// Gaussian Problem
val problem =
new LeastSquaresFittingProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin) {
override def valueFunc(r: Double, s: Double, a: Double): (Double) => Double =
NonLinearSemivariogram.explicitModel(r, s, a, Gaussian)
override def jacobianFunc(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Gaussian)
}
val optimalValues: Array[Double] = problem.optimum.getPoint.toArray
if (optimalValues(2) < 0) {
// Gaussian Nugget Problem
val nuggetProblem =
new LeastSquaresFittingNuggetProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin.dropRight(1)) {
override def valueFuncNugget(r: Double, s: Double): (Double) => Double =
NonLinearSemivariogram.explicitNuggetModel(r, s, Gaussian)
override def jacobianFuncNugget(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Gaussian)
}
val optimalValues: Array[Double] = nuggetProblem.optimum.getPoint.toArray
NonLinearSemivariogram(optimalValues(0), optimalValues(1), Gaussian)
}
else
NonLinearSemivariogram(optimalValues(0), optimalValues(1), optimalValues(2), Gaussian)
case Exponential =>
// Exponential Problem
val problem =
new LeastSquaresFittingProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin) {
override def valueFunc(r: Double, s: Double, a: Double): (Double) => Double =
NonLinearSemivariogram.explicitModel(r, s, a, Exponential)
override def jacobianFunc(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Exponential)
}
val optimalValues: Array[Double] = problem.optimum.getPoint.toArray
if (optimalValues(2) < 0) {
val nuggetProblem =
new LeastSquaresFittingNuggetProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin.dropRight(1)) {
override def valueFuncNugget(r: Double, s: Double): (Double) => Double =
NonLinearSemivariogram.explicitNuggetModel(r, s, Exponential)
override def jacobianFuncNugget(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Exponential)
}
val optimalValues: Array[Double] = nuggetProblem.optimum.getPoint.toArray
NonLinearSemivariogram(optimalValues(0), optimalValues(1), Exponential)
}
else
NonLinearSemivariogram(optimalValues(0), optimalValues(1), optimalValues(2), Exponential)
case Circular =>
// Circular Problem
val problem =
new LeastSquaresFittingProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin) {
override def valueFunc(r: Double, s: Double, a: Double): (Double) => Double =
NonLinearSemivariogram.explicitModel(r, s, a, Circular)
override def jacobianFunc(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Circular)
}
val optimalValues: Array[Double] = problem.optimum.getPoint.toArray
if (optimalValues(2) < 0) {
// Circular Nugget Problem
val nuggetProblem =
new LeastSquaresFittingNuggetProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin.dropRight(1)) {
override def valueFuncNugget(r: Double, s: Double): (Double) => Double =
NonLinearSemivariogram.explicitNuggetModel(r, s, Circular)
override def jacobianFuncNugget(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Circular)
}
val optimalValues: Array[Double] = nuggetProblem.optimum.getPoint.toArray
NonLinearSemivariogram(optimalValues(0), optimalValues(1), Circular)
}
else
NonLinearSemivariogram(optimalValues(0), optimalValues(1), optimalValues(2), Circular)
case Spherical =>
// Spherical Problem
val problem =
new LeastSquaresFittingProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin) {
override def valueFunc(r: Double, s: Double, a: Double): (Double) => Double =
NonLinearSemivariogram.explicitModel(r, s, a, Spherical)
override def jacobianFunc(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Spherical)
}
val optimalValues: Array[Double] = problem.optimum.getPoint.toArray
if (optimalValues(2) < 0) {
// Spherical Nugget Problem
val nuggetProblem =
new LeastSquaresFittingNuggetProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin.dropRight(1)) {
override def valueFuncNugget(r: Double, s: Double): (Double) => Double =
NonLinearSemivariogram.explicitNuggetModel(r, s, Spherical)
override def jacobianFuncNugget(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Spherical)
}
val optimalValues: Array[Double] = nuggetProblem.optimum.getPoint.toArray
NonLinearSemivariogram(optimalValues(0), optimalValues(1), Spherical)
}
else
NonLinearSemivariogram(optimalValues(0), optimalValues(1), optimalValues(2), Spherical)
case Wave =>
// Wave Problem
val problem =
new LeastSquaresFittingProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin) {
override def valueFunc(w: Double, s: Double, a: Double): (Double) => Double =
NonLinearSemivariogram.explicitModel(w, s, a, Wave)
override def jacobianFunc(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Wave)
}
val optimalValues: Array[Double] = problem.optimum.getPoint.toArray
if (optimalValues(2) < 0) {
// Wave Nugget Problem
val nuggetProblem =
new LeastSquaresFittingNuggetProblem(empiricalSemivariogram.distances, empiricalSemivariogram.variance, begin.dropRight(1)) {
override def valueFuncNugget(w: Double, s: Double): (Double) => Double =
NonLinearSemivariogram.explicitNuggetModel(w, s, Wave)
override def jacobianFuncNugget(variables: Array[Double]): (Double) => Array[Double] =
NonLinearSemivariogram.jacobianModel(variables, Wave)
}
val optimalValues: Array[Double] = nuggetProblem.optimum.getPoint.toArray
NonLinearSemivariogram(optimalValues(0), optimalValues(1), Wave)
}
else
NonLinearSemivariogram(optimalValues(0), optimalValues(1), optimalValues(2), Wave)
case _ => throw new UnsupportedOperationException("Fitting for $model can not be performed in this function")
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy