
geotrellis.vector.interpolation.SimpleKriging.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geotrellis-vector_2.11 Show documentation
Show all versions of geotrellis-vector_2.11 Show documentation
GeoTrellis is an open source geographic data processing engine for high performance applications.
/*
* Copyright (c) 2015 Azavea.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package geotrellis.vector.interpolation
import geotrellis.vector.PointFeature
import geotrellis.vector.Point
import org.apache.commons.math3.linear._
import spire.syntax.cfor._
object SimpleKriging {
def apply(points: Array[PointFeature[Double]], bandwidth: Double, sv: Semivariogram): Kriging = {
new SimpleKriging(points, bandwidth, sv)
}
def apply(points: Array[PointFeature[Double]], sv: Semivariogram): Kriging = {
new SimpleKriging(points, Double.MaxValue, sv)
}
def apply(points: Array[PointFeature[Double]], bandwidth: Double): Kriging = {
val empiricalSemivariogram =
new EmpiricalVariogram(
Array.tabulate(points.length){ i => points(i).geom.x},
Array.tabulate(points.length){ i => points(i).geom.y}
)
val semivariogramSpherical = Semivariogram.fit(empiricalSemivariogram, Spherical)
new SimpleKriging(points, bandwidth, semivariogramSpherical)
}
def apply(points: Array[PointFeature[Double]]): Kriging = {
val empiricalSemivariogram =
new EmpiricalVariogram(
Array.tabulate(points.length){ i => points(i).geom.x},
Array.tabulate(points.length){ i => points(i).geom.y}
)
val semivariogramSpherical = Semivariogram.fit(empiricalSemivariogram, Spherical)
new SimpleKriging(points, Double.MaxValue, semivariogramSpherical)
}
}
/**
* @param points Sample points for Simple Kriging model training
* @param bandwidth The maximum inter-point pair-distances which influence the prediction
* @param sv The fitted [[Semivariogram]] to be used for prediction
*/
class SimpleKriging(points: Array[PointFeature[Double]],
bandwidth: Double,
sv: Semivariogram) extends Kriging {
/**
* Simple Kriging training with the sample points
* @param numberOfPoints Number of points to be Kriged
*/
protected def createPredictorInit(numberOfPoints: Int): (Double, Double) => (Double, Double) = {
val n = points.length
if (n == 0)
throw new IllegalArgumentException("No points in the training dataset")
val unitCol = MatrixUtils.createColumnRealMatrix(Array.fill(n)(1))
val covariogramMatrix: RealMatrix =
unitCol.multiply(unitCol.transpose())
.scalarMultiply(sv.sill)
.subtract(varianceMatrixGen(sv, points))
.add(MatrixUtils.createRealIdentityMatrix(n).scalarMultiply(sv.nugget))
val ptData = MatrixUtils.createColumnRealMatrix(points.map(x => x.data))
(x: Double, y: Double) =>
val pointPredict: Point = Point(x, y)
val distanceSortedInfo = getPointDistancesSorted(points, 3, bandwidth, pointPredict)
val distanceID: Array[Int] = distanceSortedInfo.map(_._1)
val localCovariance =
new LUDecomposition(
covariogramMatrix.getSubMatrix(distanceID, distanceID)
).getSolver.getInverse
val distSorted = MatrixUtils.createColumnRealMatrix(distanceSortedInfo.map(_._2))
val covVec: RealMatrix =
unitCol.getSubMatrix(distanceID, Array(0))
.scalarMultiply(sv.sill)
.subtract(
MatrixUtils.createRealMatrix(
Array.tabulate(distSorted.getRowDimension, 1)
{ (i, _) => sv(distSorted.getEntry(i,0)) }
)
)
cfor(0)(_ < distSorted.getRowDimension, _ + 1) { i: Int =>
if (distSorted.getEntry(i, 0) == 0)
covVec.setEntry(i, 0, covVec.getEntry(i, 0) + sv.nugget)
}
val mu: Double = points.foldLeft(0.0)(_ + _.data) / n
val kTemp: RealMatrix = covVec.transpose().multiply(localCovariance)
val kPredict =
mu + kTemp.multiply(
ptData.getSubMatrix(distanceID, Array(0))
.subtract(
unitCol.getSubMatrix(distanceID, Array(0))
.scalarMultiply(mu)
)
).getEntry(0, 0)
val kVar = math.sqrt(sv.sill - kTemp.multiply(covVec).getEntry(0, 0))
(kPredict, kVar)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy