com.azure.cosmos.spark.RowSerializerPoolInternal.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of azure-cosmos-spark_3-2_2-12 Show documentation
Show all versions of azure-cosmos-spark_3-2_2-12 Show documentation
OLTP Spark 3.2 Connector for Azure Cosmos DB SQL API
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
package com.azure.cosmos.spark
import com.azure.cosmos.spark.diagnostics.BasicLoggingTrait
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.types.StructType
import java.time.Instant
import java.util.concurrent.{ConcurrentLinkedQueue, Executors, TimeUnit}
import java.util.concurrent.atomic.AtomicLong
import scala.collection.concurrent.TrieMap
import scala.util.control.NonFatal
/**
* Spark serializers are not thread-safe - and expensive to create (dynamic code generation)
* So we will use this object pool to allow reusing serializers based on the targeted schema.
* The main purpose for pooling serializers (vs. creating new ones in each PartitionReader) is for Structured
* Streaming scenarios where PartitionReaders for the same schema could be created every couple of 100
* milliseconds
* A clean-up task is used to purge serializers for schemas which weren't used anymore
* For each schema we have an object pool that will use a soft-limit to limit the memory footprint
*/
private class RowSerializerPoolInstance(val serializerFactory: StructType => ExpressionEncoder.Serializer[Row])
extends BasicLoggingTrait {
val MaxPooledSerializerCount = 256
private[this] val cleanUpIntervalInSeconds = 300
private[this] val expirationIntervalInSeconds = 1800
private[this] val schemaScopedSerializerMap =
new TrieMap[StructType, RowSerializerQueue]
private[this] val executorService = Executors.newSingleThreadScheduledExecutor(SparkUtils.daemonThreadFactory())
executorService.scheduleWithFixedDelay(
() => this.onCleanUp(),
cleanUpIntervalInSeconds,
cleanUpIntervalInSeconds,
TimeUnit.SECONDS)
def getOrCreateSerializer(schema: StructType): ExpressionEncoder.Serializer[Row] = {
schemaScopedSerializerMap.get(schema) match {
case Some(objectPool) => objectPool.borrowSerializer(schema)
case None => serializerFactory.apply(schema)
}
}
def returnSerializerToPool(schema: StructType, serializer: ExpressionEncoder.Serializer[Row]): Boolean = {
schemaScopedSerializerMap.get(schema) match {
case Some(objectPool) => objectPool.returnSerializer(serializer)
case None =>
val newQueue = new RowSerializerQueue(serializerFactory)
newQueue.returnSerializer(serializer)
schemaScopedSerializerMap.putIfAbsent(schema, newQueue).isEmpty
}
}
private[this] def onCleanUp(): Unit = {
try {
val expirationThreshold: Long = Instant.now.minusSeconds(expirationIntervalInSeconds).toEpochMilli
schemaScopedSerializerMap
.readOnlySnapshot()
.foreach(keyValuePair => {
if (keyValuePair._2.getLastBorrowedAny < expirationThreshold) {
schemaScopedSerializerMap.remove(keyValuePair._1, keyValuePair._2)
}
})
} catch {
case NonFatal(e) => logError("Callback onCleanup invocation failed.", e)
}
}
/**
* A slim wrapper around ConcurrentLinkedQueue with the purpose of
* - having a soft-limit on how many serializers can be pooled - there is no need to have an
* exact limit - best effort is acceptable. When we exceed the max size we don't offer
* returned serializers to the pool anymore to have a limited memory footprint.
* - keeping track of when any serializer for a certain schema was used last to allow the owner
* to purge serializers for schemas not used anymore.
*/
private class RowSerializerQueue(val serializerFactory: StructType => ExpressionEncoder.Serializer[Row]) {
private[this] val objectPool = new ConcurrentLinkedQueue[ExpressionEncoder.Serializer[Row]]()
private[this] val estimatedSize = new AtomicLong(0)
private[this] val lastBorrowedAny = new AtomicLong(Instant.now.toEpochMilli)
def borrowSerializer(schema: StructType): ExpressionEncoder.Serializer[Row] = {
lastBorrowedAny.set(Instant.now.toEpochMilli)
Option.apply(objectPool.poll()) match {
case Some(serializer) =>
estimatedSize.decrementAndGet()
serializer
case None => serializerFactory.apply(schema)
}
}
def returnSerializer(serializer: ExpressionEncoder.Serializer[Row]): Boolean = {
if (estimatedSize.incrementAndGet() > MaxPooledSerializerCount) {
estimatedSize.decrementAndGet()
false
} else {
objectPool.offer(serializer)
true
}
}
def getLastBorrowedAny: Long = lastBorrowedAny.get()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy