com.azure.cosmos.spark.ItemsDataWriteFactory.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of azure-cosmos-spark_3-3_2-12 Show documentation
Show all versions of azure-cosmos-spark_3-3_2-12 Show documentation
OLTP Spark 3.3 Connector for Azure Cosmos DB SQL API
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
package com.azure.cosmos.spark
import com.azure.cosmos.spark.diagnostics.LoggerHelper
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.write.streaming.StreamingDataWriterFactory
import org.apache.spark.sql.connector.write.{DataWriter, DataWriterFactory}
import org.apache.spark.sql.types.StructType
// scalastyle:off multiple.string.literals
private class ItemsDataWriteFactory(userConfig: Map[String, String],
inputSchema: StructType,
cosmosClientStateHandles: Broadcast[CosmosClientMetadataCachesSnapshots],
diagnosticsConfig: DiagnosticsConfig,
sparkEnvironmentInfo: String)
extends DataWriterFactory
with StreamingDataWriterFactory {
@transient private lazy val log = LoggerHelper.getLogger(diagnosticsConfig, this.getClass)
log.logTrace(s"Instantiated ${this.getClass.getSimpleName}")
/**
* Returns a data writer to do the actual writing work. Note that, Spark will reuse the same data
* object instance when sending data to the data writer, for better performance. Data writers
* are responsible for defensive copies if necessary, e.g. copy the data before buffer it in a
* list.
*
* If this method fails (by throwing an exception), the corresponding Spark write task would fail
* and get retried until hitting the maximum retry times.
*
* @param partitionId A unique id of the RDD partition that the returned writer will process.
* Usually Spark processes many RDD partitions at the same time,
* implementations should use the partition id to distinguish writers for
* different partitions.
* @param taskId The task id returned by `TaskContext# taskAttemptId ( )`. Spark may run
* multiple tasks for the same partition (due to speculation or task failures,
* for example).
*/
override def createWriter(partitionId: Int, taskId: Long): DataWriter[InternalRow] =
new CosmosWriter(
userConfig,
cosmosClientStateHandles,
diagnosticsConfig,
inputSchema,
partitionId,
taskId,
None,
sparkEnvironmentInfo)
/**
* Returns a data writer to do the actual writing work. Note that, Spark will reuse the same data
* object instance when sending data to the data writer, for better performance. Data writers
* are responsible for defensive copies if necessary, e.g. copy the data before buffer it in a
* list.
*
* If this method fails (by throwing an exception), the corresponding Spark write task would fail
* and get retried until hitting the maximum retry times.
*
* @param partitionId A unique id of the RDD partition that the returned writer will process.
* Usually Spark processes many RDD partitions at the same time,
* implementations should use the partition id to distinguish writers for
* different partitions.
* @param taskId The task id returned by `TaskContext# taskAttemptId ( )`. Spark may run
* multiple tasks for the same partition (due to speculation or task failures,
* for example).
* @param epochId A monotonically increasing id for streaming queries that are split in to
* discrete periods of execution.
*/
override def createWriter(partitionId: Int, taskId: Long, epochId: Long): DataWriter[InternalRow] =
new CosmosWriter(
userConfig,
cosmosClientStateHandles,
diagnosticsConfig,
inputSchema,
partitionId,
taskId,
Some(epochId),
sparkEnvironmentInfo)
}
// scalastyle:on multiple.string.literals
© 2015 - 2025 Weber Informatics LLC | Privacy Policy