![JAR search and dependency download from the Maven repository](/logo.png)
com.azure.security.keyvault.keys.cryptography.CryptographyAsyncClient Maven / Gradle / Ivy
Show all versions of azure-security-keyvault-keys Show documentation
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
package com.azure.security.keyvault.keys.cryptography;
import com.azure.core.annotation.ReturnType;
import com.azure.core.annotation.ServiceClient;
import com.azure.core.annotation.ServiceMethod;
import com.azure.core.exception.ResourceNotFoundException;
import com.azure.core.http.HttpPipeline;
import com.azure.core.http.rest.Response;
import com.azure.core.util.FluxUtil;
import com.azure.core.util.logging.ClientLogger;
import com.azure.core.util.logging.LogLevel;
import com.azure.security.keyvault.keys.cryptography.implementation.CryptographyClientImpl;
import com.azure.security.keyvault.keys.cryptography.implementation.LocalKeyCryptographyClient;
import com.azure.security.keyvault.keys.cryptography.models.DecryptParameters;
import com.azure.security.keyvault.keys.cryptography.models.DecryptResult;
import com.azure.security.keyvault.keys.cryptography.models.EncryptParameters;
import com.azure.security.keyvault.keys.cryptography.models.EncryptResult;
import com.azure.security.keyvault.keys.cryptography.models.EncryptionAlgorithm;
import com.azure.security.keyvault.keys.cryptography.models.KeyWrapAlgorithm;
import com.azure.security.keyvault.keys.cryptography.models.SignResult;
import com.azure.security.keyvault.keys.cryptography.models.SignatureAlgorithm;
import com.azure.security.keyvault.keys.cryptography.models.UnwrapResult;
import com.azure.security.keyvault.keys.cryptography.models.VerifyResult;
import com.azure.security.keyvault.keys.cryptography.models.WrapResult;
import com.azure.security.keyvault.keys.implementation.KeyClientImpl;
import com.azure.security.keyvault.keys.implementation.SecretMinClientImpl;
import com.azure.security.keyvault.keys.models.JsonWebKey;
import com.azure.security.keyvault.keys.models.KeyVaultKey;
import reactor.core.publisher.Mono;
import java.util.Objects;
import static com.azure.core.util.FluxUtil.monoError;
import static com.azure.core.util.FluxUtil.withContext;
import static com.azure.security.keyvault.keys.cryptography.implementation.CryptographyUtils.createLocalClient;
import static com.azure.security.keyvault.keys.cryptography.implementation.CryptographyUtils.isThrowableRetryable;
import static com.azure.security.keyvault.keys.cryptography.implementation.CryptographyUtils.retrieveJwkAndCreateLocalAsyncClient;
/**
* The {@link CryptographyAsyncClient} provides asynchronous methods to perform cryptographic operations using
* asymmetric and symmetric keys. The client supports encrypt, decrypt, wrap key, unwrap key, sign and verify
* operations using the configured key.
*
* Getting Started
*
* In order to interact with the Azure Key Vault service, you will need to create an instance of the
* {@link CryptographyAsyncClient} class, a vault url and a credential object.
*
* The examples shown in this document use a credential object named DefaultAzureCredential for authentication,
* which is appropriate for most scenarios, including local development and production environments. Additionally,
* we recommend using a
*
* managed identity for authentication in production environments.
* You can find more information on different ways of authenticating and their corresponding credential types in the
*
* Azure Identity documentation".
*
* Sample: Construct Asynchronous Cryptography Client
*
* The following code sample demonstrates the creation of a {@link CryptographyAsyncClient}, using the
* {@link CryptographyClientBuilder} to configure it.
*
*
*
* CryptographyAsyncClient cryptographyAsyncClient = new CryptographyClientBuilder()
* .keyIdentifier("<your-key-id>")
* .credential(new DefaultAzureCredentialBuilder().build())
* .buildAsyncClient();
*
*
*
*
* JsonWebKey jsonWebKey = new JsonWebKey().setId("SampleJsonWebKey");
* CryptographyAsyncClient cryptographyAsyncClient = new CryptographyClientBuilder()
* .jsonWebKey(jsonWebKey)
* .buildAsyncClient();
*
*
*
*
* When a {@link CryptographyAsyncClient} gets created using a {@code Azure Key Vault key identifier}, the first
* time a cryptographic operation is attempted, the client will attempt to retrieve the key material from the service,
* cache it, and perform all future cryptographic operations locally, deferring to the service when that's not possible.
* If key retrieval and caching fails because of a non-retryable error, the client will not make any further attempts
* and will fall back to performing all cryptographic operations on the service side. Conversely, when a
* {@link CryptographyAsyncClient} created using a {@link JsonWebKey JSON Web Key}, all cryptographic operations will be
* performed locally.
*
*
*
* Encrypt Data
* The {@link CryptographyAsyncClient} can be used to encrypt data.
*
* Code Sample:
* The following code sample demonstrates how to asynchronously encrypt data using the
* {@link CryptographyAsyncClient#encrypt(EncryptionAlgorithm, byte[])} API.
*
*
*
* byte[] plaintext = new byte[100];
* new Random(0x1234567L).nextBytes(plaintext);
*
* cryptographyAsyncClient.encrypt(EncryptionAlgorithm.RSA_OAEP, plaintext)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(encryptResult ->
* System.out.printf("Received encrypted content of length: %d, with algorithm: %s.%n",
* encryptResult.getCipherText().length, encryptResult.getAlgorithm().toString()));
*
*
*
* Note: For the synchronous sample, refer to {@link CryptographyClient}.
*
*
*
*
*
* Decrypt Data
* The {@link CryptographyAsyncClient} can be used to decrypt data.
*
* Code Sample:
*
* The following code sample demonstrates how to asynchronously decrypt data using the
* {@link CryptographyAsyncClient#decrypt(EncryptionAlgorithm, byte[])} API.
*
*
*
* byte[] ciphertext = new byte[100];
* new Random(0x1234567L).nextBytes(ciphertext);
*
* cryptographyAsyncClient.decrypt(EncryptionAlgorithm.RSA_OAEP, ciphertext)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(decryptResult ->
* System.out.printf("Received decrypted content of length: %d%n", decryptResult.getPlainText().length));
*
*
*
* Note: For the synchronous sample, refer to {@link CryptographyClient}.
*
* @see com.azure.security.keyvault.keys.cryptography
* @see CryptographyClientBuilder
*/
@ServiceClient(builder = CryptographyClientBuilder.class, isAsync = true,
serviceInterfaces = {KeyClientImpl.KeyClientService.class,
SecretMinClientImpl.SecretMinClientService.class})
public class CryptographyAsyncClient {
private static final ClientLogger LOGGER = new ClientLogger(CryptographyAsyncClient.class);
private final HttpPipeline pipeline;
private volatile boolean skipLocalClientCreation;
private volatile LocalKeyCryptographyClient localKeyCryptographyClient;
final CryptographyClientImpl implClient;
final String keyId;
/**
* Creates a {@link CryptographyAsyncClient} that uses a given {@link HttpPipeline pipeline} to service requests.
*
* @param keyId The Azure Key Vault key identifier to use for cryptography operations.
* @param pipeline {@link HttpPipeline} that the HTTP requests and responses flow through.
* @param version {@link CryptographyServiceVersion} of the service to be used when making requests.
* @param disableKeyCaching Indicates if local key caching should be disabled and all cryptographic operations
* deferred to the service.
*/
CryptographyAsyncClient(String keyId, HttpPipeline pipeline, CryptographyServiceVersion version,
boolean disableKeyCaching) {
this.implClient = new CryptographyClientImpl(keyId, pipeline, version);
this.keyId = keyId;
this.pipeline = pipeline;
this.skipLocalClientCreation = disableKeyCaching;
}
/**
* Creates a {@link CryptographyAsyncClient} that uses a {@link JsonWebKey} to perform local cryptography
* operations.
*
* @param jsonWebKey The {@link JsonWebKey} to use for local cryptography operations.
*/
CryptographyAsyncClient(JsonWebKey jsonWebKey) {
Objects.requireNonNull(jsonWebKey, "The JSON Web Key is required.");
if (!jsonWebKey.isValid()) {
throw new IllegalArgumentException("The JSON Web Key is not valid.");
}
if (jsonWebKey.getKeyOps() == null) {
throw new IllegalArgumentException("The JSON Web Key's key operations property is not configured.");
}
if (jsonWebKey.getKeyType() == null) {
throw new IllegalArgumentException("The JSON Web Key's key type property is not configured.");
}
this.implClient = null;
this.keyId = jsonWebKey.getId();
this.pipeline = null;
try {
this.localKeyCryptographyClient = createLocalClient(jsonWebKey, null);
} catch (RuntimeException e) {
throw LOGGER.logExceptionAsError(
new RuntimeException("Could not initialize local cryptography client.", e));
}
}
/**
* Gets the {@link HttpPipeline} powering this client.
*
* @return The pipeline.
*/
HttpPipeline getHttpPipeline() {
return this.pipeline;
}
/**
* Gets the public part of the configured key. The get key operation is applicable to all key types and it requires
* the {@code keys/get} permission for non-local operations.
*
* Code Samples
* Gets the configured key in the client. Subscribes to the call asynchronously and prints out the returned key
* details when a response has been received.
*
*
*
* cryptographyAsyncClient.getKey()
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(key ->
* System.out.printf("Key returned with name: %s, and id: %s.%n", key.getName(), key.getId()));
*
*
*
* @return A {@link Mono} containing the requested {@link KeyVaultKey key}.
*
* @throws ResourceNotFoundException When the configured key doesn't exist in the key vault.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono getKey() {
return getKeyWithResponse().flatMap(FluxUtil::toMono);
}
/**
* Gets the public part of the configured key. The get key operation is applicable to all key types and it requires
* the {@code keys/get} permission for non-local operations.
*
* Code Samples
* Gets the configured key in the client. Subscribes to the call asynchronously and prints out the returned key
* details when a response has been received.
*
*
*
* cryptographyAsyncClient.getKeyWithResponse()
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(keyResponse ->
* System.out.printf("Key returned with name: %s, and id: %s.%n", keyResponse.getValue().getName(),
* keyResponse.getValue().getId()));
*
*
*
* @return A {@link Mono} containing a {@link Response} whose {@link Response#getValue() value} contains the
* requested {@link KeyVaultKey key}.
*
* @throws ResourceNotFoundException When the configured key doesn't exist in the key vault.
* @throws UnsupportedOperationException When operating in local-only mode (using a client created using a
* JsonWebKey instance).
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono> getKeyWithResponse() {
if (implClient != null) {
try {
return implClient.getKeyAsync();
} catch (RuntimeException e) {
return monoError(LOGGER, e);
}
} else {
return monoError(LOGGER,
new UnsupportedOperationException("Operation not supported when operating in local-only mode."));
}
}
/**
* Encrypts an arbitrary sequence of bytes using the configured key. Note that the encrypt operation only supports
* a single block of data, the size of which is dependent on the target key and the encryption algorithm to be
* used.
* The encrypt operation is supported for both symmetric keys and asymmetric keys. In case of asymmetric keys, the
* public portion of the key is used for encryption. This operation requires the {@code keys/encrypt} permission
* for non-local operations.
*
* The {@link EncryptionAlgorithm encryption algorithm} indicates the type of algorithm to use for encrypting
* the
* specified {@code plaintext}. Possible values for asymmetric keys include:
* {@link EncryptionAlgorithm#RSA1_5 RSA1_5}, {@link EncryptionAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link EncryptionAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link EncryptionAlgorithm#A128CBC A128CBC},
* {@link EncryptionAlgorithm#A128CBCPAD A128CBCPAD}, {@link EncryptionAlgorithm#A128CBC_HS256 A128CBC-HS256},
* {@link EncryptionAlgorithm#A128GCM A128GCM}, {@link EncryptionAlgorithm#A192CBC A192CBC},
* {@link EncryptionAlgorithm#A192CBCPAD A192CBCPAD}, {@link EncryptionAlgorithm#A192CBC_HS384 A192CBC-HS384},
* {@link EncryptionAlgorithm#A192GCM A192GCM}, {@link EncryptionAlgorithm#A256CBC A256CBC},
* {@link EncryptionAlgorithm#A256CBCPAD A256CBPAD}, {@link EncryptionAlgorithm#A256CBC_HS512 A256CBC-HS512} and
* {@link EncryptionAlgorithm#A256GCM A256GCM}.
*
* Code Samples
* Encrypts the content. Subscribes to the call asynchronously and prints out the encrypted content details when
* a response has been received.
*
*
*
* byte[] plaintext = new byte[100];
* new Random(0x1234567L).nextBytes(plaintext);
*
* cryptographyAsyncClient.encrypt(EncryptionAlgorithm.RSA_OAEP, plaintext)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(encryptResult ->
* System.out.printf("Received encrypted content of length: %d, with algorithm: %s.%n",
* encryptResult.getCipherText().length, encryptResult.getAlgorithm().toString()));
*
*
*
* @param algorithm The algorithm to be used for encryption.
* @param plaintext The content to be encrypted.
*
* @return A {@link Mono} containing a {@link EncryptResult} whose
* {@link EncryptResult#getCipherText() cipher text} contains the encrypted content.
*
* @throws NullPointerException If {@code algorithm} or {@code plaintext} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for encryption.
* @throws UnsupportedOperationException If the encrypt operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono encrypt(EncryptionAlgorithm algorithm, byte[] plaintext) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.encryptAsync(algorithm, plaintext, context);
} else {
return implClient.encryptAsync(algorithm, plaintext, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Encrypts an arbitrary sequence of bytes using the configured key. Note that the encrypt operation only supports
* a single block of data, the size of which is dependent on the target key and the encryption algorithm to be
* used.
* The encrypt operation is supported for both symmetric keys and asymmetric keys. In case of asymmetric keys, the
* public portion of the key is used for encryption. This operation requires the {@code keys/encrypt} permission
* for non-local operations.
*
* The {@link EncryptionAlgorithm encryption algorithm} indicates the type of algorithm to use for encrypting
* the
* specified {@code plaintext}. Possible values for asymmetric keys include:
* {@link EncryptionAlgorithm#RSA1_5 RSA1_5}, {@link EncryptionAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link EncryptionAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link EncryptionAlgorithm#A128CBC A128CBC},
* {@link EncryptionAlgorithm#A128CBCPAD A128CBCPAD}, {@link EncryptionAlgorithm#A128CBC_HS256 A128CBC-HS256},
* {@link EncryptionAlgorithm#A128GCM A128GCM}, {@link EncryptionAlgorithm#A192CBC A192CBC},
* {@link EncryptionAlgorithm#A192CBCPAD A192CBCPAD}, {@link EncryptionAlgorithm#A192CBC_HS384 A192CBC-HS384},
* {@link EncryptionAlgorithm#A192GCM A192GCM}, {@link EncryptionAlgorithm#A256CBC A256CBC},
* {@link EncryptionAlgorithm#A256CBCPAD A256CBPAD}, {@link EncryptionAlgorithm#A256CBC_HS512 A256CBC-HS512} and
* {@link EncryptionAlgorithm#A256GCM A256GCM}.
*
* Code Samples
* Encrypts the content. Subscribes to the call asynchronously and prints out the encrypted content details when
* a response has been received.
*
*
*
* byte[] plaintextBytes = new byte[100];
* new Random(0x1234567L).nextBytes(plaintextBytes);
* byte[] iv = {
* (byte) 0x1a, (byte) 0xf3, (byte) 0x8c, (byte) 0x2d, (byte) 0xc2, (byte) 0xb9, (byte) 0x6f, (byte) 0xfd,
* (byte) 0xd8, (byte) 0x66, (byte) 0x94, (byte) 0x09, (byte) 0x23, (byte) 0x41, (byte) 0xbc, (byte) 0x04
* };
*
* EncryptParameters encryptParameters = EncryptParameters.createA128CbcParameters(plaintextBytes, iv);
*
* cryptographyAsyncClient.encrypt(encryptParameters)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(encryptResult ->
* System.out.printf("Received encrypted content of length: %d, with algorithm: %s.%n",
* encryptResult.getCipherText().length, encryptResult.getAlgorithm().toString()));
*
*
*
* @param encryptParameters The parameters to use in the encryption operation.
*
* @return A {@link Mono} containing a {@link EncryptResult} whose
* {@link EncryptResult#getCipherText() cipher text} contains the encrypted content.
*
* @throws NullPointerException If {@code algorithm} or {@code plaintext} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for encryption.
* @throws UnsupportedOperationException If the encrypt operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono encrypt(EncryptParameters encryptParameters) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.encryptAsync(encryptParameters, context);
} else {
return implClient.encryptAsync(encryptParameters, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Decrypts a single block of encrypted data using the configured key and specified algorithm. Note that only a
* single block of data may be decrypted, the size of this block is dependent on the target key and the algorithm
* to be used. The decrypt operation is supported for both asymmetric and symmetric keys. This operation requires
* the {@code keys/decrypt} permission for non-local operations.
*
* The {@link EncryptionAlgorithm encryption algorithm} indicates the type of algorithm to use for decrypting
* the specified encrypted content. Possible values for asymmetric keys include:
* {@link EncryptionAlgorithm#RSA1_5 RSA1_5}, {@link EncryptionAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link EncryptionAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link EncryptionAlgorithm#A128CBC A128CBC},
* {@link EncryptionAlgorithm#A128CBCPAD A128CBCPAD}, {@link EncryptionAlgorithm#A128CBC_HS256 A128CBC-HS256},
* {@link EncryptionAlgorithm#A128GCM A128GCM}, {@link EncryptionAlgorithm#A192CBC A192CBC},
* {@link EncryptionAlgorithm#A192CBCPAD A192CBCPAD}, {@link EncryptionAlgorithm#A192CBC_HS384 A192CBC-HS384},
* {@link EncryptionAlgorithm#A192GCM A192GCM}, {@link EncryptionAlgorithm#A256CBC A256CBC},
* {@link EncryptionAlgorithm#A256CBCPAD A256CBPAD}, {@link EncryptionAlgorithm#A256CBC_HS512 A256CBC-HS512} and
* {@link EncryptionAlgorithm#A256GCM A256GCM}.
*
* Code Samples
* Decrypts the encrypted content. Subscribes to the call asynchronously and prints out the decrypted content
* details when a response has been received.
*
*
*
* byte[] ciphertext = new byte[100];
* new Random(0x1234567L).nextBytes(ciphertext);
*
* cryptographyAsyncClient.decrypt(EncryptionAlgorithm.RSA_OAEP, ciphertext)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(decryptResult ->
* System.out.printf("Received decrypted content of length: %d%n", decryptResult.getPlainText().length));
*
*
*
* @param algorithm The algorithm to be used for decryption.
* @param ciphertext The content to be decrypted. Microsoft recommends you not use CBC without first ensuring the
* integrity of the ciphertext using an HMAC, for example.
* See Timing
* vulnerabilities with CBC-mode symmetric decryption using padding for more information.
*
* @return A {@link Mono} containing the decrypted blob.
*
* @throws NullPointerException If {@code algorithm} or {@code ciphertext} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for decryption.
* @throws UnsupportedOperationException If the decrypt operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono decrypt(EncryptionAlgorithm algorithm, byte[] ciphertext) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.decryptAsync(algorithm, ciphertext, context);
} else {
return implClient.decryptAsync(algorithm, ciphertext, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Decrypts a single block of encrypted data using the configured key and specified algorithm. Note that only a
* single block of data may be decrypted, the size of this block is dependent on the target key and the algorithm
* to be used. The decrypt operation is supported for both asymmetric and symmetric keys. This operation requires
* the {@code keys/decrypt} permission for non-local operations.
*
* The {@link EncryptionAlgorithm encryption algorithm} indicates the type of algorithm to use for decrypting
* the specified encrypted content. Possible values for asymmetric keys include:
* {@link EncryptionAlgorithm#RSA1_5 RSA1_5}, {@link EncryptionAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link EncryptionAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link EncryptionAlgorithm#A128CBC A128CBC},
* {@link EncryptionAlgorithm#A128CBCPAD A128CBCPAD}, {@link EncryptionAlgorithm#A128CBC_HS256 A128CBC-HS256},
* {@link EncryptionAlgorithm#A128GCM A128GCM}, {@link EncryptionAlgorithm#A192CBC A192CBC},
* {@link EncryptionAlgorithm#A192CBCPAD A192CBCPAD}, {@link EncryptionAlgorithm#A192CBC_HS384 A192CBC-HS384},
* {@link EncryptionAlgorithm#A192GCM A192GCM}, {@link EncryptionAlgorithm#A256CBC A256CBC},
* {@link EncryptionAlgorithm#A256CBCPAD A256CBPAD}, {@link EncryptionAlgorithm#A256CBC_HS512 A256CBC-HS512} and
* {@link EncryptionAlgorithm#A256GCM A256GCM}.
*
* Code Samples
* Decrypts the encrypted content. Subscribes to the call asynchronously and prints out the decrypted content
* details when a response has been received.
*
*
*
* byte[] ciphertextBytes = new byte[100];
* new Random(0x1234567L).nextBytes(ciphertextBytes);
* byte[] iv = {
* (byte) 0x1a, (byte) 0xf3, (byte) 0x8c, (byte) 0x2d, (byte) 0xc2, (byte) 0xb9, (byte) 0x6f, (byte) 0xfd,
* (byte) 0xd8, (byte) 0x66, (byte) 0x94, (byte) 0x09, (byte) 0x23, (byte) 0x41, (byte) 0xbc, (byte) 0x04
* };
*
* DecryptParameters decryptParameters = DecryptParameters.createA128CbcParameters(ciphertextBytes, iv);
*
* cryptographyAsyncClient.decrypt(decryptParameters)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(decryptResult ->
* System.out.printf("Received decrypted content of length: %d.%n", decryptResult.getPlainText().length));
*
*
*
* @param decryptParameters The parameters to use in the decryption operation. Microsoft recommends you not use CBC
* without first ensuring the integrity of the ciphertext using an HMAC, for example.
* See Timing vulnerabilities
* with CBC-mode symmetric decryption using padding for more information.
*
* @return A {@link Mono} containing the decrypted blob.
*
* @throws NullPointerException If {@code algorithm} or {@code ciphertext} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for decryption.
* @throws UnsupportedOperationException If the decrypt operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono decrypt(DecryptParameters decryptParameters) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.decryptAsync(decryptParameters, context);
} else {
return implClient.decryptAsync(decryptParameters, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Creates a signature from a digest using the configured key. The sign operation supports both asymmetric and
* symmetric keys. This operation requires the {@code keys/sign} permission for non-local operations.
*
* The {@link SignatureAlgorithm signature algorithm} indicates the type of algorithm to use to create the
* signature from the digest. Possible values include:
* {@link SignatureAlgorithm#ES256 ES256}, {@link SignatureAlgorithm#ES384 ES384},
* {@link SignatureAlgorithm#ES512 ES512}, {@link SignatureAlgorithm#ES256K ES256K},
* {@link SignatureAlgorithm#PS256 PS256}, {@link SignatureAlgorithm#RS384 RS384},
* {@link SignatureAlgorithm#RS512 RS512}, {@link SignatureAlgorithm#RS256 RS256},
* {@link SignatureAlgorithm#RS384 RS384}, and {@link SignatureAlgorithm#RS512 RS512}.
*
* Code Samples
* Sings the digest. Subscribes to the call asynchronously and prints out the signature details when a response
* has been received.
*
*
*
* byte[] data = new byte[100];
* new Random(0x1234567L).nextBytes(data);
* MessageDigest md = MessageDigest.getInstance("SHA-256");
* md.update(data);
* byte[] digest = md.digest();
*
* cryptographyAsyncClient.sign(SignatureAlgorithm.ES256, digest)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(signResult ->
* System.out.printf("Received signature of length: %d, with algorithm: %s.%n",
* signResult.getSignature().length, signResult.getAlgorithm()));
*
*
*
* @param algorithm The algorithm to use for signing.
* @param digest The content from which signature is to be created.
*
* @return A {@link Mono} containing a {@link SignResult} whose {@link SignResult#getSignature() signature}
* contains the created signature.
*
* @throws NullPointerException If {@code algorithm} or {@code digest} is {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for signing.
* @throws UnsupportedOperationException If the sign operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono sign(SignatureAlgorithm algorithm, byte[] digest) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.signAsync(algorithm, digest, context);
} else {
return implClient.signAsync(algorithm, digest, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Verifies a signature using the configured key. The verify operation supports both symmetric keys and asymmetric
* keys. In case of asymmetric keys public portion of the key is used to verify the signature. This operation
* requires the {@code keys/verify} permission for non-local operations.
*
* The {@link SignatureAlgorithm signature algorithm} indicates the type of algorithm to use to verify the
* signature. Possible values include:
* {@link SignatureAlgorithm#ES256 ES256}, {@link SignatureAlgorithm#ES384 ES384},
* {@link SignatureAlgorithm#ES512 ES512}, {@link SignatureAlgorithm#ES256K ES256K},
* {@link SignatureAlgorithm#PS256 PS256}, {@link SignatureAlgorithm#RS384 RS384},
* {@link SignatureAlgorithm#RS512 RS512}, {@link SignatureAlgorithm#RS256 RS256},
* {@link SignatureAlgorithm#RS384 RS384}, and {@link SignatureAlgorithm#RS512 RS512}.
*
* Code Samples
* Verifies the signature against the specified digest. Subscribes to the call asynchronously and prints out the
* verification details when a response has been received.
*
*
*
* byte[] myData = new byte[100];
* new Random(0x1234567L).nextBytes(myData);
* MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");
* messageDigest.update(myData);
* byte[] myDigest = messageDigest.digest();
*
* // A signature can be obtained from the SignResult returned by the CryptographyAsyncClient.sign() operation.
* cryptographyAsyncClient.verify(SignatureAlgorithm.ES256, myDigest, signature)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(verifyResult ->
* System.out.printf("Verification status: %s.%n", verifyResult.isValid()));
*
*
*
* @param algorithm The algorithm to use for signing.
* @param digest The content from which signature was created.
* @param signature The signature to be verified.
*
* @return A {@link Mono} containing a {@link VerifyResult}
* {@link VerifyResult#isValid() indicating the signature verification result}.
*
* @throws NullPointerException If {@code algorithm}, {@code digest} or {@code signature} is {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for verifying.
* @throws UnsupportedOperationException If the verify operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono verify(SignatureAlgorithm algorithm, byte[] digest, byte[] signature) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.verifyAsync(algorithm, digest, signature, context);
} else {
return implClient.verifyAsync(algorithm, digest, signature, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Wraps a symmetric key using the configured key. The wrap operation supports wrapping a symmetric key with both
* symmetric and asymmetric keys. This operation requires the {@code keys/wrapKey} permission for non-local
* operations.
*
* The {@link KeyWrapAlgorithm wrap algorithm} indicates the type of algorithm to use for wrapping the specified
* key content. Possible values include:
* {@link KeyWrapAlgorithm#RSA1_5 RSA1_5}, {@link KeyWrapAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link KeyWrapAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link EncryptionAlgorithm#A128KW A128KW},
* {@link EncryptionAlgorithm#A192KW A192KW} and {@link EncryptionAlgorithm#A256KW A256KW}.
*
* Code Samples
* Wraps the key content. Subscribes to the call asynchronously and prints out the wrapped key details when a
* response has been received.
*
*
*
* byte[] key = new byte[100];
* new Random(0x1234567L).nextBytes(key);
*
* cryptographyAsyncClient.wrapKey(KeyWrapAlgorithm.RSA_OAEP, key)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(wrapResult ->
* System.out.printf("Received encrypted key of length: %d, with algorithm: %s.%n",
* wrapResult.getEncryptedKey().length, wrapResult.getAlgorithm().toString()));
*
*
*
* @param algorithm The encryption algorithm to use for wrapping the key.
* @param key The key content to be wrapped.
*
* @return A {@link Mono} containing a {@link WrapResult} whose {@link WrapResult#getEncryptedKey() encrypted key}
* contains the wrapped key result.
*
* @throws NullPointerException If {@code algorithm} or {@code key} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for wrap operation.
* @throws UnsupportedOperationException If the wrap operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono wrapKey(KeyWrapAlgorithm algorithm, byte[] key) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.wrapKeyAsync(algorithm, key, context);
} else {
return implClient.wrapKeyAsync(algorithm, key, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Unwraps a symmetric key using the configured key that was initially used for wrapping that key. This operation
* is the reverse of the wrap operation. The unwrap operation supports asymmetric and symmetric keys to unwrap.
* This
* operation requires the {@code keys/unwrapKey} permission for non-local operations.
*
* The {@link KeyWrapAlgorithm wrap algorithm} indicates the type of algorithm to use for unwrapping the
* specified encrypted key content. Possible values for asymmetric keys include:
* {@link KeyWrapAlgorithm#RSA1_5 RSA1_5}, {@link KeyWrapAlgorithm#RSA_OAEP RSA_OAEP} and
* {@link KeyWrapAlgorithm#RSA_OAEP_256 RSA_OAEP_256}.
*
* Possible values for symmetric keys include: {@link KeyWrapAlgorithm#A128KW A128KW},
* {@link KeyWrapAlgorithm#A192KW A192KW} and {@link KeyWrapAlgorithm#A256KW A256KW}.
*
* Code Samples
* Unwraps the key content. Subscribes to the call asynchronously and prints out the unwrapped key details when
* a response has been received.
*
*
*
* byte[] keyToWrap = new byte[100];
* new Random(0x1234567L).nextBytes(key);
*
* cryptographyAsyncClient.wrapKey(KeyWrapAlgorithm.RSA_OAEP, keyToWrap)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(wrapResult ->
* cryptographyAsyncClient.unwrapKey(KeyWrapAlgorithm.RSA_OAEP, wrapResult.getEncryptedKey())
* .subscribe(keyUnwrapResult ->
* System.out.printf("Received key of length: %d.%n", keyUnwrapResult.getKey().length)));
*
*
*
* @param algorithm The encryption algorithm to use for wrapping the key.
* @param encryptedKey The encrypted key content to unwrap.
*
* @return A {@link Mono} containing an {@link UnwrapResult} whose {@link UnwrapResult#getKey() decrypted
* key} contains the unwrapped key result.
*
* @throws NullPointerException If {@code algorithm} or {@code encryptedKey} are {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for wrap operation.
* @throws UnsupportedOperationException If the unwrap operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono unwrapKey(KeyWrapAlgorithm algorithm, byte[] encryptedKey) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.unwrapKeyAsync(algorithm, encryptedKey, context);
} else {
return implClient.unwrapKeyAsync(algorithm, encryptedKey, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Creates a signature from the raw data using the configured key. The sign data operation supports both asymmetric
* and symmetric keys. This operation requires the {@code keys/sign} permission for non-local operations.
*
* The {@link SignatureAlgorithm signature algorithm} indicates the type of algorithm to use to sign the digest.
* Possible values include:
* {@link SignatureAlgorithm#ES256 ES256}, {@link SignatureAlgorithm#ES384 ES384},
* {@link SignatureAlgorithm#ES512 ES512}, {@link SignatureAlgorithm#ES256K ES256K},
* {@link SignatureAlgorithm#PS256 PS256}, {@link SignatureAlgorithm#RS384 RS384},
* {@link SignatureAlgorithm#RS512 RS512}, {@link SignatureAlgorithm#RS256 RS256},
* {@link SignatureAlgorithm#RS384 RS384}, and {@link SignatureAlgorithm#RS512 RS512}.
*
* Code Samples
* Signs the raw data. Subscribes to the call asynchronously and prints out the signature details when a
* response has been received.
*
*
*
* byte[] data = new byte[100];
* new Random(0x1234567L).nextBytes(data);
*
* cryptographyAsyncClient.sign(SignatureAlgorithm.ES256, data)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(signResult ->
* System.out.printf("Received signature of length: %d, with algorithm: %s.%n",
* signResult.getSignature().length, signResult.getAlgorithm()));
*
*
*
* @param algorithm The algorithm to use for signing.
* @param data The content from which signature is to be created.
*
* @return A {@link Mono} containing a {@link SignResult} whose {@link SignResult#getSignature() signature}
* contains the created signature.
*
* @throws NullPointerException If {@code algorithm} or {@code data} is {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for signing.
* @throws UnsupportedOperationException If the sign operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono signData(SignatureAlgorithm algorithm, byte[] data) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.signDataAsync(algorithm, data, context);
} else {
return implClient.signDataAsync(algorithm, data, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
/**
* Verifies a signature against the raw data using the configured key. The verify operation supports both symmetric
* keys and asymmetric keys. In case of asymmetric keys public portion of the key is used to verify the signature.
* This operation requires the {@code keys/verify} permission for non-local operations.
*
* The {@link SignatureAlgorithm signature algorithm} indicates the type of algorithm to use to verify the
* signature. Possible values include:
* {@link SignatureAlgorithm#ES256 ES256}, {@link SignatureAlgorithm#ES384 ES384},
* {@link SignatureAlgorithm#ES512 ES512}, {@link SignatureAlgorithm#ES256K ES256K},
* {@link SignatureAlgorithm#PS256 PS256}, {@link SignatureAlgorithm#RS384 RS384},
* {@link SignatureAlgorithm#RS512 RS512}, {@link SignatureAlgorithm#RS256 RS256},
* {@link SignatureAlgorithm#RS384 RS384}, and {@link SignatureAlgorithm#RS512 RS512}.
*
* Code Samples
* Verifies the signature against the raw data. Subscribes to the call asynchronously and prints out the
* verification details when a response has been received.
*
*
*
* byte[] myData = new byte[100];
* new Random(0x1234567L).nextBytes(myData);
*
* // A signature can be obtained from the SignResult returned by the CryptographyAsyncClient.sign() operation.
* cryptographyAsyncClient.verify(SignatureAlgorithm.ES256, myData, signature)
* .contextWrite(Context.of("key1", "value1", "key2", "value2"))
* .subscribe(verifyResult ->
* System.out.printf("Verification status: %s.%n", verifyResult.isValid()));
*
*
*
* @param algorithm The algorithm to use for signing.
* @param data The raw content against which signature is to be verified.
* @param signature The signature to be verified.
*
* @return A {@link Mono} containing a {@link VerifyResult}
* {@link VerifyResult#isValid() indicating the signature verification result}.
*
* @throws NullPointerException If {@code algorithm}, {@code data} or {@code signature} is {@code null}.
* @throws ResourceNotFoundException If the key cannot be found for verifying.
* @throws UnsupportedOperationException If the verify operation is not supported or configured on the key.
*/
@ServiceMethod(returns = ReturnType.SINGLE)
public Mono verifyData(SignatureAlgorithm algorithm, byte[] data, byte[] signature) {
try {
return withContext(context -> isLocalClientAvailable().flatMap(available -> {
if (available) {
return localKeyCryptographyClient.verifyDataAsync(algorithm, data, signature, context);
} else {
return implClient.verifyDataAsync(algorithm, data, signature, context);
}
}));
} catch (RuntimeException ex) {
return monoError(LOGGER, ex);
}
}
private Mono isLocalClientAvailable() {
if (!skipLocalClientCreation && localKeyCryptographyClient == null) {
return retrieveJwkAndCreateLocalAsyncClient(implClient)
.map(localClient -> {
localKeyCryptographyClient = localClient;
return true;
})
.onErrorResume(t -> {
if (isThrowableRetryable(t)) {
LOGGER.log(LogLevel.VERBOSE, () -> "Could not set up local cryptography for this operation. "
+ "Defaulting to service-side cryptography.", t);
} else {
skipLocalClientCreation = true;
LOGGER.log(LogLevel.VERBOSE, () -> "Could not set up local cryptography. Defaulting to"
+ "service-side cryptography for all operations.", t);
}
return Mono.just(false);
});
}
return Mono.just(localKeyCryptographyClient != null);
}
}